Prepared by the State Board of Education (SBOE) TEKS Review Committees

Final Recommendations, October 2011

In 2010-2011 the Commissioner's Mathematics Advisory Group was convened to offer recommendations regarding the next generation of mathematics standards in Texas. The Commissioner's Draft of the Texas Mathematics Standards reflects the recommendations of the Commissioner's Mathematics Advisory Group and a panel of national advisors in mathematics. The SBOE-appointed mathematics TEKS review committees used The Commissioner's Draft of the Texas Mathematics Standards as a starting point for their recommendations for revisions to the TEKS.

These proposed revisions reflect the recommended changes of the committees to the standards in The Commissioner's Draft of the Texas Mathematics Standards. Proposed additions are shown in green font with underlines (additions) and proposed deletions are shown in red font with strikethroughs (deletions). Changes recommended based on a vertical alignment review are shown in brown font (additions or deletions).

Comments in the right-hand column provide explanations for the proposed changes. The following notations were used as part of the explanations:
BSG-information added, changed, or deleted based on broad-strokes guidance from the SBOE
CRS—information added or changed to align with the Texas College and Career Readiness Standards (CCRS)
ER-information added, changed, or deleted based on expert reviewer feedback
IF-information added, changed, or deleted based on informal feedback
MV—multiple viewpoints from within the committee
SBOE-information added, changed, or deleted based on SBOE feedback
VA-information added, changed, or deleted to increase vertical alignment

Grade 7		

Grade 6

Aathematical-Process Standards-Grade-6					
Apply mathematics to problems arising in everyday life, society and the workplace.					
Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution and evaluating the problem-solving process.					
Select tools such as real objects, manipulatives, paper/pencil, and technology or techniques such as mental math, estimation, and number sense to solve problems.					
Communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, graphs, and language.					
Create and use representations to organize, record, and communicate mathematical ideas.					
Explain, display, or justify mathematical ideas and arguments using precise mathematical language in written or oral communications.					
Grade 6 Focal Areas			Supporting Topics for the Focal Areas in Grade 6 and Grade 7		
Number and Operations	Δ	Solving problems with multiplication and division of	Number and Operations		Using integer operations
		rational numbers	Proportionality		Understanding and using percents
Proportionality	\bigcirc	Understanding and applying ratios and rates	Expressions, Equations, and Relationships		Using multiple representations of Independent and dependent quantities
Expressions, Equations, and		Extending measurement to area			Writing and evaluating expressions Solving one-step equations and inequalities
Relationships			Measurement and Data	A	Summarizing data using appropriate graphical representations
			Color and symbol shows the connection between Focal Areas and Supporting Topics. $\boldsymbol{+}$ Indicates topic supports Focal Area in Grade 7		

Grade 6

Introduction

The desire to achieve education excellence is the driving force behind the Texas Essential Knowledge and Skills for mathematics, guided by the College and Career Readiness Standards. By embedding statistics, probability, finance, and focusing on fluency and deep understandings, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the 21st century.
The process standards are integrated at every grade level and course. When possible, students will apply mathematics to problems arising in everyday life, society, and the workplace. Students will use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution. Students will select appropriate tools such as real objects, manipulatives, paper and pencil, and technology and techniques such as mental math, estimation, and number sense to solve problems. Students will effectively communicate mathematical ideas, reasoning, and their implications using multiple representations such as symbols, diagrams, graphs, and language. Students will analyze mathematical relationships to connect and communicate mathematical ideas. Students will display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication.

The primary focal points at Grade 6 are number operations; proportionality; expressions, equations and relationships; and measurement and data. Students use concepts, algorithms, and properties of rational numbers to explore mathematical relationships and to describe increasingly complex situations. Students use concepts of proportionality to explore, develop, and communicate mathematical relationships. Students use algebraic thinking to describe how a change in one quantity in a relationship results in a change in the other; and they connect verbal, numeric, graphic, and symbolic representations of relationships including equations and inequalities. Students use geometric properties and relationships, as well as spatial reasoning, to model and analyze situations and solve problems. Students communicate information about geometric figures or situations by quantifying attributes, generalize procedures from
measurement experiences, and use the procedures to solve problems. Students use appropriate statistics, representations of data, and reasoning to draw conclusions, evaluate arguments, and make recommendations. While the use of all types of technology is important, the emphasis on algebra readiness skills necessitates the implementation of graphing technology.

Mathematical Process Standards

Knowledge and Skills Statement. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
apply mathematics to problems arising in everyday life, society ${ }_{2}$ and the workplace
use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and-evaluating the problem-solving process and the reasonableness

VA-Process Standards moved to knowledge and skills statements

	select tools, including such as real objects, manipulatives, paper/pencil, and technology as appropriate, and of techniques, including such as mental math, estimation, and number sense as appropriate, to solve problems	
	communicate mathematical ideas, reasoning, and their implications using multiple representations, including such as symbols, diagrams, graphs, and language as appropriate	VA-Process Standards moved to knowledge and skills statements
	create and use representations to organize, record, and communicate mathematical ideas	
	analyze mathematical relationships to connect and communicate mathematical ideas	
	display, explain, and or justify mathematical ideas and arguments using precise mathematical language in written oral communications	
Number and Operations.		6N
Knowledge and Skills Statement. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:		
	classify whole numbers, integers, and rational numbers using a visual representation, such as a Venn diagram to describe relationships between sets of numbers	ER
	identify a number, its opposite, and its absolute value	VA, ER, IF
	locate, compare, and order integers using a number line	VA, ER, IF
6N01	locate, compare, and order rational numbers using a extend previous understandings of number line to include placement and ordering rational numbers and absolute values of rational numbers	Language clarification, to highlight the connection of a number and its absolute value.
6N02	order a set of rational numbers arising from mathematical and or real-world contexts	ER
6N05	extend representations for division to include fraction notation such as For example the fraction notation a / b represents the same number as $a \div b$ where $b \neq 0$	Formatting IF
Knowledge and Skills Statement. The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions. The student is expected to:		
6N03	represent multiplication and division of positive rational numbers decimals to the hundredths place using models and connect to an algorithm in mathematical and reat-world problems with concrete, verbal, pictorial (including number line and area models), numerical, and algebraic representations	VA - Moved from 5th

6N04	use an area model to represent fraction multiplication and decimal multiplication and division, including the multiplication or division of a fraction and a decimal For example, generate area models for $1.3 \times 2.5,13 / 10 \times 2 \frac{1}{2}$, and $1.3 \times 2 \frac{1}{2}$ explaining why these multiplications vield equivalent products	MV, ER - Separate multiplication and division for clarity Not intended to have fraction and decimal multiplication together within a single problem
	$\underline{\text { recognize that dividing by a rational number and multiplying by its reciprocal result in equivalent values }}$	MV, ER - Separate multiplication and division for clarity
6N06	determine whether a quantity is increased or decreased when multiplied by a fraction including values greater than or less than one (proper or improper) with and without computation	ER
6N07	represent integer operations with concrete (such as counters), verbal, pictorial, tabular (such as patterns), and graphical(such as a number line) representations models and connect the actions to algorithms	Several ER Developing Integers (by definition) include positive and negative whole numbers.
6N08	use previous understanding of all four operations to include whole numbers and positive decimals, fractions, and mixed numbers not having fractions and decimals within the same problem multiply and divide positive rational numbers fluently	Developing ER
6N09	add, subtract, multiply, and divide integers fluently	Moved integer fluency to $7^{\text {th }}$ grade; rational number fluency moved to $8^{\text {th }}$ grade. ER, IF
	add and subtract positive rational numbers fluently	VA
Proportionality.		6P
Number		
Knowledge and Skills Statement. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations. The student is expected to:		
6P01	compare two rules verbally, numerically, graphically, and symbolically in the form of $y=a x$ or $y=x+a$ in order to differentiate between additive and multiplicative relationships	ER clarity
6P05	apply qualitative and quantitative reasoning to solve prediction and comparison real-world problems involving ratios and rates	
6P02	give examples of ratios as multiplicative comparisons of two quantities describing the same attribute-For example the ratio of the length of worm A to worm B is 9 cm to 6 cm , so worm A is 1.5 times as long as worm B	Format Examples moved to PD

6P03	give examples of rates as the comparison by division of two quantities having different attributes, including rates as quotients, (e.g., 2 inches per 3 seconds is equivalent to $2 / 3$ inches per second)	Format Examples moved to PD
	represent ratios and percents with concrete models, fractions, and decimals	Vertical alignment
6P08	represent benchmark fractions and percents equivalents such as $\not \leqslant 1 \%, 10 \%, 25 \%, 331 / 3 \%$, and multiples of these valuest using 10×10 grids, strip diagrams, number lines, and numbers	
6P09	generate identify equivalent forms of fractions, decimals, and percents using real world problems, including problems that involve money	SB 290
Knowledge and Skills Statement. The student applies mathematical process standards to solve problems involving proportional relationships. The student is expected to:		
6P04	represent mathematical and real world problems involving ratios and rates using scale factors, tables, graphs, and proportions	
6 6P06	solve mathematical and real-world problems involving ratios and rates using scale factors, unit rates, tables, graphs, and proportions	Covered in 7P04 ER - reduce $6^{\text {th }}$ grade content
6 6P07	determine conversions within a measurement system, including the use of proportions and unit rates in mathematical and real-world problems	Moved to $7^{\text {th }}$ grade
6P10	solve determine solutions to real-world problems, finding the whole, given a part and the percent; finding the part, given the whole and the percent ; and finding the percent, given the part and the whole using concrete and pictorial models	student need foundation before moving to abstract
	use equivalent fractions, decimals, and percents to show equal parts of the same whole	Readiness VA
Expressions, Equations and Relationships.		6A
Apply and Extend Arithmetic to Expressions and Equations		
Knowledge and Skills Statement. The student applies mathematical process standards to use multiple representations to describe algebraic relationships. The student is expected to:		
6A01	identify represent independent and dependent quantities from tables and graphs with mathematical or reat world problem using variables	VA
6 A 02	write an equation that represents the relationship between independent and dependent quantities from a table within a mathematical or real-world problem	ER, IF, VA
6403	represent mathematical and real-world problems with a rule equivalent to the form y - $k x$ or $y-x+6$	Combined 6A03 and 6A04

6 A 04	represent key aspects of mathematical and real-world problems a given situation using verbal descriptions, tables, graphs, and of equations in the form $y=k x$ or $y=x+b$	Combined 6A03 and 6A04 Clarity VA
6406	represent_expressions verbally, numerically, and adgebraically	Combined with 6A07 ER
Knowledge and Skills Statement. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:		
6 605	generate equivalent transform numerical expressions using the order of operations, including positive exponents and prime factorization	Clarity VA Gap analysis result
6407	distinguish between expressions and equations verbally, numerically, and algebraically	ER Combined with 6A05
6 609	determine if two expressions are equivalent using concrete models, pictorial models, and algebraic representations	
6 608	generate equivalent expressions using the properties of operations such as the inverse, identity, commutative, associative, and distributive properties	ER
Apply and Extend Arithmetic to Geometric Formulas		
Knowledge and Skills Statement. The student applies mathematical process standards to use geometry to represent relationships and solve problems. The student is expected to:		
	extend previous knowledge of triangles and their properties to include the sum of angles of a triangle, the relationship between the lengths of sides and measures of angles in a triangle, and determining when three lengths form a triangle	VA
6 A 10	model area formulas for illustrate and explain the relationships for areas of parallelograms, trapezoids, and triangles by decomposing and rearranging parts of these shapes figures For example, parallelogram can be decomposed into a trapezoid and a right triangle with congruent heights; the triangle can be moved so that a rectangle is created having the same base length and height as the original parallelogram. (Figures include oblique triangles and parallelograms.)	example is not correct in general case. Clarification ER
6 A 11	write equations that represent mathematical and real-world problems related to the area of frectangles, parallelograms, trapezoids, and trianglest and volume of right rectangular prisms where. (Ddimensions should include are positive rational numbers.)	format
6 A 12	determine solutions for mathematical and real-world problems involving the area of frectangles, parallelograms, trapezoids, and trianglest and volume of right rectangular prisms where. (Ddimensions should include are positive rational numbers.)	format
Represent and Solve Equations and Inequalities		

Knowledge and Skills Statement. The student applies mathematical process standards to use equations and inequalities to represent situations.
The student is expected to:

6A13	write a one-variable fone-step $_{+}$equations and or inequalityies to represent constraints or conditions within a mathematical (including number lines) or real-world-problems	clarity and formatting ensure both are addressed
6A14		clarity ensure both are addressed
6A15	write a corresponding real-world problems given a one-variable, fone-stepł equation or inequalit	clarity ensure both are addressed
Knowledge and Skills Statement. The student applies mathematical process standards to use equations and inequalities to solve problems. The student is expected to:		
6A16	model and solve one-variable, fone-stepł equations and inequalities that represent real world and mathematical problems, including geometric concepts such as complementary and supplementary angles	consistency ensure both are addressed ER
6A17	determine if the given value(s) that make(s) z one-variable, fone-stepł equations or inequalityies true	consistency ensure both are addressed

Measurement and Data.

Knowledge and Skills Statement. The student applies mathematical process standards to use coordinate geometry to identify locations on a plane. The student is expected to:

6M01
graph points in all four quadrants using ordered pairs of rational numbers, including points such as $(1 / 2,-1 / 2)$
Clarity
Knowledge and Skills Statement. The student applies mathematical process standards to use numerical or graphical representations to analyze problems. The student is expected to:

6 M 02	represent summarize numeric data with graphically representations, including dot plots, stem-and-leaf plots, histograms and box plots	
6 M 04	use the graphical representation of numeric data to describe the center, spread, and shape of the data distribution	
6 M 06	summarize numeric data with numerical summaries, including the mean and median (measures of center) and the range and interquartile range (IQR) (measures of spread), and use these summaries to describe the center, spread, and shape of the data distribution	Clarity

Knowledge and Skills Statement. The student applies mathematical process standards to use numerical or graphical representations to solve problems. The student is expected to:

6M03

interpret solve multistep mathematical and real-world problems using numeric data summarized in dot plots, stem-and-leaf plots, histograms, and or box plots
distinguish between situations questions that yield data with and without variability such as .For example, the question "How tall am I?" will be answered with a single height versus the question "How tall are the students in my class?" which would be answered based on heights that vary

Formatting, clarity

Grade 7

Grade 7

Introduction

The desire to achieve education excellence is the driving force behind the Texas Essential Knowledge and Skills for mathematics, guided by the College and Career Readiness Standards. By embedding statistics, probability, finance, and focusing on fluency and solid understandings, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the 21st century.
The process standards are integrated at every grade level and course. When possible, students will apply mathematics to problems arising in everyday life, society, and the workplace. Students will use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution. Students will select appropriate tools such as real objects, manipulatives, paper and pencil, and technology and techniques such as mental math, estimation, and number sense to solve problems. Students will effectively communicate mathematical ideas, reasoning, and their implications using multiple representations such as symbols, diagrams, graphs, and language. Students will analyze mathematical relationships to connect and communicate mathematical ideas. Students will display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication.
The primary focal points at Grade 7 are number operations; proportionality; expressions, equations and relationships; and measurement and data. Students use concepts, algorithms, and properties of rational numbers to explore mathematical relationships and to describe increasingly complex situations. Students use concepts of proportionality to explore, develop, and communicate mathematical relationships, including number, geometry and measurement, and statistics and probability. Students use algebraic thinking to describe how a change in one quantity in a relationship results in a change in the other; and they connect verbal, numeric, graphic, and symbolic representations of relationships, including equations and inequalities. Students use geometric properties and relationships, as well as spatial reasoning, to model and analyze situations and solve problems. Students communicate information about geometric figures or situations by quantifying attributes, generalize procedures from measurement experiences, and use the procedures to solve problems. Students use appropriate statistics, representations of data, and reasoning to draw conclusions, evaluate arguments, and make recommendations. While the use of all types of technology is important, the emphasis on algebra readiness skills necessitates the implementation of graphing technology.

Mathematical Process Standards

Knowledge and Skills Statement. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

[^0]VA-Process Standards moved to knowledge and skills statements

7P02	calculate unit rates from rates in mathematical and real-world problems,-including rates such as $11 / 2$ miles in each $3 / 4$ hour is the same as 6 miles in each 3 hours or 2 miles per hour	Example is not in a unit rate
7P03	determine the constant of proportionality $(k=y / x)$ to identify the invariant rate within mathematical and realworld problems	ER-language
	solve real-world problems to find the whole given a part and the percent, the part given the whole and the percent, and the percent given the part and the whole	SBOE extending foundation set up in $6^{\text {th }}$ grade.
7P04	solve determine solutions to real-world and mathematical problems involving ratios, rates, and percents, including multistep problems involving percent increase and percent decrease including financialliteracy problems such as tax, tip, discount, simple interest, and commission	SBOE feedback MV SB 290
	convert units within a measurement system, including the use of proportions and unit r	Moved from $6^{\text {th }}$ grade 6P07
7P08	convert determine conversions between measurement systems mathematical and real-world problems, including the use of proportions and the use of unit rates	ER and clarity
Geometry and Measurement		
Knowledge and Skills Statement. The student applies mathematical process standards to use geometry to describe or solve problems involving proportional relationships. The student is expected to:		
7P05	generalize the critical attributes of similarity, including ratios within and between similar shapes invariant and covariant relationships. (If a, a^{\prime} and b, b^{\prime} are side lengths of two pairs of corresponding sides, then $a / a^{\prime}=b / b^{\prime}$ and $a / b-a^{\prime} / b^{\prime}$. Corresponding angles of similar figures are congruent.)	clarity and consistency of order ER
7P06	describe represent π as the ratio of the circumference of a circle to its diameter and the area of a circle to the square of its radius	Clarity ER
7P07	solve determine solutions to mathematical and real-world problems involving similar shape figures and/or scale drawings	ER \& SBOE formatting
Statistics and Probability		
Knowledge and Skills Statement. The student applies mathematical process standards to develop concepts of probability for simple and compound events. The student is expected to:		
7P09	represent sample spaces for simple and compound events using lists and tree diagrams	
	select and use different simulations to represent simple and compound events with and without technology	necessary for concept development ER \& IF
Knowledge and Skills Statement. The student applies mathematical process standards to make predictions and determine solutions for simple and compound events. The student is expected to:		

7P11	make predictions and determine solutions using to mathematical and real-world problems involving experimental data for simple and compound events probabilistic events and make predictions with this data	concept development with clarity
	make predictions and determine solutions using theoretical probability for simple and compound events	concept development with clarity
Knowledge and Skills Statement. The student applies mathematical process standards to find solutions in probability and statistics. The student is expected to:		
	find the probabilities of a simple event and its complement and describe the	concept development CCRS
7P10	use data from a random sample to make inferences about a population determine solutionsto mathematica and reat-world problems involving random sampling and application to the full population	clarity and intent
7P12	solve determine solutions to mathematical and real world problems using data represented in bar graphs, dot plots, and circle graphs. Include, including part-to-whole and part-to-part comparisons and equivalents	
7P13	solve determine solutions to mathematical and real-world problems involving using qualitative and quantitative predictions and comparisons data from simple experiments fInclude qualitative prediction and qualitative comparison problems in addition to quantitative prediction and quantitative comparison problems based on the probabilities of simple events. $P(E)=0 \vee s . P(E)=1 / 2 \vee$. $. P(E)=1$. $]$	MV
7P14	determine experimental and theoretical probabilities related to simple and compound events using data and sample spaces	
$7 P 15$	determine solutions to mathematical and reat-world problems based on prediction using probabilities of simple events	included in previous expectation ER
Expressions, Equations, and Relationships.		7 A
Apply and Extend Arithmetic to Expressions and Equations		
Knowledge and Skills Statement. The student applies mathematical process standards to represent linear relationships using multiple representations. The student is expected to:		
7A01	represent linear relationships mathematical and real-world problems using verbal descriptions, tables, graphs, and equations that simplify to the form $y=m x+b$	ER clarity and insertion of vocabulary
Apply and Extend Measurement to Geometric Formulas		
Knowledge and Skills Statement. The student applies mathematical process standards to develop geometric relationships with volume. The student is expected to:		

7A02	model illustrate and explain the relationship between the volume of a rectangular prism and a rectangular pyramid having both congruent bases and heights, and connect that relationship to the formulas For example, the volume of a pyramid is $1 / 3$ the volume of the prism that has the same base area and height	clarity and format
7A03	explain verbally and symbolically illustrate-and explain the relationship between the volume of a triangular prism and a triangular pyramid having both congruent bases and heights and connect that relationship to the formulas	clarity and format
	use models to determine the approximate formulas for the circumference and area of a circle and connect models to the actual formulas	
Knowledge and Skills Statement. The student applies mathematical process standards to solve geometric problems. The student is expected to:		
7A04	solve determine solutions to mathematical and real-world problems involving the volume of rectangular prisms, triangular prisms, rectangular pyramids, and of triangular pyramids	clarity and format
7A05	determine the circumference and area of circles in mathematical and real-world proble	
7A06	determine the area of composite figures containing any combination comprised of rectangles, squares, parallelograms, trapezoids, triangles, semi-circles, and quarter-circles	clarification and consistency with reference chart
7G01	solve mathematical and reat-world problems involving the lateral and total surface area of a rectangular prism, rectangular pyramid, triangular prism, and or triangular pyramid by determining the area of the figure shape's net	vertical alignment moved to cluster similar concepts
Represent and Solve Equations and Inequalities		
Knowledge and Skills Statement. The student applies mathematical process standards to use one-variable equations and inequalities to represent situations. The student is expected to:		
7A07	write a one-variable (ftwo-stepł equations and or inequalityies to represent constraints or conditions within a mathematical or real-world problems	clarity and formatting ensure both are addressed
7A08	represent the solutions for z one-variable, ttwo-stepł equations and inequalityies on a number lines	clarity ensure both are addressed
7A09	write a corresponding real-world problem given z one-variable _ $_{2}$ two-stepł equation or inequality	clarity ensure both are addressed
Knowledge and Skills Statement. The student applies mathematical process standards to solve one-variable equations and inequalities. The student is expected to:		
7A10	model and solve one-variable (two-step) equations and inequalities that represent mathematical and realworld problems	consistency ensure both are addressed

Mathematical Process-Standards_Grade-8						
Apply mathematics to problems arising in everyday life, society and the workplace.						
Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution and evaluating the problem-solving process.						
Select tools such as real objects, manipulatives, paper/pencil, and technology or techniques such as mental math, VA-Process estimation, and number sense to solve problems.						
communicate mathematical ideas, reasoning, and their implications using symbols, diagrams, graphs, and knowledge and skills tanguage. statements						
Create and use representations to organize, record, and communicate mathematical ideas. Explain, display, or justify mathematical ideas and arguments using precise mathematical language in written of oral communications.						
Grade 8 Focal Areas			Supporting Topics for the Focal Areas in Grade 8 and Algebra I			
Proportionality	-	Understanding and applying rate of change and slope	Number and Operation	$\Delta 0$	Using ir Using s	I numbers notation
Proportionality	-	Understanding and applying foundations for linear functions	Proportionality		Representing similarity and dilations on a coordinate plane	
Expressions, Equations, and Relationships	\bigcirc	Writing and solving equations	Foundations for Function	$\begin{aligned} & \Delta 0 \\ & \Delta 0 \end{aligned}$	Determining linear association within data Using multiple representations of linear functions ($y=k x$ and $y=m x+b$)	
			Expressions, Equations, and Relationships		Using in Extend cylinde Unders	exponents surement to volume s and spheres and applying Pythag
			Two-Dimensional and Three-Dimensional Figures	-	Under	and representing
			Measurement and Data	$\triangle O$ $\Delta 0$	Identify in data Identif sample	nds in data to determ nds in data to determ on
			Color and symbol shows the connection between Focal Areas and Supporting Topics. + Indicates topic supports Focal Area in Algebra I			

Grade 8

Introduction

The desire to achieve educational excellence is the driving force behind the Texas Essential Knowledge and Skills for mathematics, guided by the College and Career Readiness Standards. By embedding statistics, probability, and finance, while focusing on fluency and solid understanding, Texas will lead the way in mathematics education and prepare all Texas students for the challenges they will face in the 21st century.
The process standards are integrated at every grade level and course. When possible, students will apply mathematics to problems arising in everyday life, society, and the workplace. Students will use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution. Students will select appropriate tools such as real objects, manipulatives, paper and pencil, and technology and techniques such as mental math, estimation, and number sense to solve problems. Students will effectively communicate mathematical ideas, reasoning, and their implications using multiple representations such as symbols, diagrams, graphs, and language. Students will use mathematical relationships to generate solutions and make connections and predictions. Students will analyze mathematical relationships to connect and communicate mathematical ideas. Students will display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication.
The primary focal points at Grade 8 are proportionality; expressions, equations, relationships, and foundations of functions; and measurement and data. Students use concepts, algorithms, and properties of real numbers to explore mathematical relationships and to describe increasingly complex situations. Students use concepts of proportionality to explore, develop, and communicate mathematical relationships. Students use algebraic thinking to describe how a change in one quantity in a relationship results in a change in the other; and they connect verbal, numeric, graphic, and symbolic representations of relationships, including equations and inequalities. Students begin to develop an understanding of functional relationships. Students use geometric properties and relationships as well as spatial reasoning to model and analyze situations and solve problems. Students communicate information about geometric figures or situations by quantifying attributes, generalize procedures from measurement experiences, and use the procedures to solve problems. Students use appropriate statistics, representations of data, and reasoning to draw conclusions, evaluate arguments, and make recommendations. While the use of all types of technology is important, the emphasis on algebra readiness skills necessitates the implementation of graphing technology.

Mathematical Process Standards

Knowledge and Skills Statement. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:

	apply mathematics to problems arising in everyday life, society , and the workplace	
	use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution , and evaluating the problem-solving process and the $^{\text {reasonableness of the solution }}$	VA-Process Standards moved to knowledge and skills statements

	select tools, including such as real objects, manipulatives, paper/pencil, and technology as appropriate, and or techniques, including such as mental math, estimation, and number sense as appropriate, to solve problems	
	communicate mathematical ideas, reasoning, and their implications using multiple representations, including such as symbols, diagrams, graphs, and language as appropriate	VA-Process Standards moved to knowledge and skills statements
	create and use representations to organize, record, and communicate mathematical ideas	
	analyze mathematical relationships to connect and communicate mathematical ideas	
	display, explain, and of justify mathematical ideas and arguments using precise mathematical language in written or oral communications	
Number and Operation.		8N
Knowledge and Skills Statement. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to:		
	extend previous knowledge of sets and subsets using a visual representation, such as a Venn diagram to describe relationships between sets of real numbers	Vertical alignment
	add, subtract, multiply, and divide rational numbers fluently	Moved from $7^{\text {th }}$ grade for alignment and developmental appropriateness.
8N01	approximate the value illustrate the rational approximation of an irrational number and locate that the rational number approximation on a number line. Include π and Numbers include square roots of numbers less than 225 , cube roots for numbers less than 225 with a whole number cube root, and π	```ER - Clarity MV ER - deletion of cubed roots```
8NO2	convert between base-10 notation and scientific notation	MV - isolated topic Should be in Algebra 1 taught in context with properties of exponents.
8N03	extend previous understandings of number line to include ordering rational and irrational numbers	Redundancy
8NO4	order a set of real fational and irrational numbers arising from mathematical and of real-world contexts	Clarity
8N05	approximate multiplicative comparisons between two numbers expressed in scientific notations based on realworld problems. (The average distance from the earth to the moon is $3.84 \times 10^{5} \mathrm{~km}$. The average distance from the earth to Mars is $2.28 \times 10^{8} \mathrm{~km}$. How many times greater is the distance from the earth to Mars than the distance from the earth to the moon?)	MV - not developmentally appropriate MV-isolated topic. Limited use in higher levels of math.

Proportionality. 8P

Dilations

Knowledge and Skills Statement. The student applies mathematical process standards to use proportional relationships to describe dilations.
The student is expected to:

8P01	generalize that the ratio of corresponding sides of similar shapes are proportional, including a shape and it's dilation the distance between any two points of a geometric figure G and the distance between two corresponding points of its dilation, $D(G)$ are the same for all pairs of distinct points in G and that if two line segments $A B$ and $C D$ are given in G, then the ratio of the length of $A B$ to the length of $C D$ is equal to the ratio of the length of their dilations $D(A B)$ and D (CD)	clarity ER
8P02	compare and contrast the attributes of a explain the similarities and differences between a given figure shape and its dilation(s) on a coordinate plane	ER
8P03	use an algebraic representation to explain the effect of a given positive rational scale factors applied to twodimensional figures on a coordinate plane with the origin as the center of dilation using an algebraic representation such as FFor example, when a scale factor of 0.5 is applied to a graphed figure, the transformation can be described with $(x, y) \rightarrow(0.5 x, 0.5 y)\}$	$E R$
Slope		
Knowledge and Skills Statement. The student applies mathematical process standards to explain proportional and non-proportional relationships involving slope. The student is expected to:		
8P04	use explain using similar right triangles to develop an understanding that why the slope, m, given as the rate comparing the change in y-values to divided by the change in x-values, $\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$, is the same for any two points (x_{1}, y_{1}) and (x_{2}, y_{2}) on the same line	clarity connecting rate to slope ER
8P05	graph proportional relationships, interpreting the unit rate as the slope of the line that models modeling the relationship	IF
	use data from a table or graph to determine the rate of change or slope and y -intercept in mathematical and real-world problems	Clarity IF
8 8P14	determine the slope (rate of change) and the y-intercept (initial value) of the data in a table or graph that models a given context	IF \& ER
Foundations for Functions		
Knowledge and Skills Statement. The student applies mathematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to:		
8P06	represent key aspects of linear proportional situations and direct variation with tables, graphs, and equations in the form of $t y=k x t$	Clarity and consistency ER

8A04	illustrate-and explain the relationship between the formula for the volume of a sphere as it relates to the volume of a cone whose base radius and height are equal and are congruent to the radius of the sphere	ER
8A06	use models and diagrams to represent, verify, and explain the Pythagorean theorem and its converse using models and diagrams	$\begin{aligned} & \mathrm{MV} \\ & \mathrm{ER} \end{aligned}$
Knowledge and Skills Statement. The student applies mathematical process standards to use geometry to solve problems. The student is expected to:		
8A05	solve determine solutions to mathematical and reat-world problems involving the volume of cylinders, cones, and spheres	
	use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders	necessary for vertical alignment
8A07	use the Pythagorean theorem and its converse to solve mathematical and real-world problem	
8A08	determine the distance between two points on a coordinate plane using the Pythagorean theorem	
Represent and Solve Equations and Inequalities		
Knowledge and Skills Statement. The student applies mathematical process standards to use one-variable equations in problem situations. The student is expected to:		
8A09	write a one-variable equations equation with variables on both sides that represent represents a of mathematical or real-world problems problem, using. (The equations should include rational number coefficients and constantsł	clarity, consistency
8A11	write a corresponding real-world problem when given a one-variable equation with variables on both sides of the equal sign including using rational number coefficients and constants	
8A12	model and solve one-variable equations with variables on both sides of the equal sign that represent mathematical and real-world problems, using. (The equations should include rational number coefficients and constantst	clarity and consistency
	write and solve equations using geometry concepts, including the angle relationships when parallel lines are cut by a transversal	VA \& ER
	write and solve equations using geometry concepts, including the properties of side lengths and angles in quadrilaterals	VA
Knowledge and Skills Statement. The student applies mathematical process standards to use multiple representations to develop foundational concepts of simultaneous linear equations. The student is expected to:		
8A10	identify and verify match the values of x and y that simultaneously satisfy two linear equations fin the form $y=m x+b+$ from with the intersections of the graphed equations	ER

Two-Dimensional and Three-Dimensional Figures Shapes.
Knowledge and Skills Statement. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to:

[^0]: Apply mathematics to problems arising in everyday life, society ${ }_{2}$ and the workplace
 Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution

