Content Advisor Feedback on the Science Texas Essential Knowledge and Skills -Woerner 2020

GUIDING QUESTIONS

1. Is the current structure or framework of the kindergarten–grade 12 science TEKS appropriate? If not, what recommendations do you have for organizing or structuring the TEKS?

The structure is organized and consistent; however, there is a tremendous amount of overlap and redundancy in the "Knowledge and Skills" sections of the document. I believe that there could be an overarching introduction to the document outlining good laboratory practices, safety, recycling, etc. This could also be incorporated into a live, electronic document with embedded hyperlinks referencing such materials. On the other hand, if you wish for each grade level/section of the document to stand alone, then this is a moot point. Perhaps this exists outside of the Science curriculum document, be it seems as if many, if not all, of the expectations/guidelines should point back to a core value and/or objectives statement or document.

2. Does each grade level and/or course follow a complete and logical development of science concepts presented within the grade level/course? If not, what improvements are needed?

Yes, the concepts seem logical, vertically integrated, and increasing in rigor. It is hard to understand rigor completely without being familiar with the reference materials (i.e. textbooks, scientific resources, lab guides, etc.), but many of the concepts and expectations, beginning in the middle school years, seem to be advanced enough to exceed not only the abilities of a pre-teen or teen student, but also the ability and/or previous education and training that educators have in their professional positions. All levels suggest that students (and teachers) conduct research in the classroom setting. Research is a topic that most educators are not exposed to at an advanced level in the university setting, particularly in the science fields.

Also, there is not a specific reference to learning the scientific method. This should be addressed as soon as students begin to conduct experiments and/or research. Also, as early as grade 3, references are being made to analysis and interpretation of patterns in data. Data collection, integrity, analysis (statistical), and interpretation should be addressed prior to simply having students interpret the data. Statistics is another major deficit area in this portion of the curriculum, especially with the amount of analysis and interpretation of data that is expected throughout the curriculum at all grade levels.

3. Are the core concepts specific to the disciplines of science (e.g., life science, physical science, and earth and space science) adequately addressed across the K–12 TEKS? If not, please identify the discipline and the concepts that are missing.

The curriculum does a notable job covering a very broad scope of science disciplines, but the curriculum is lacking reference and meaningfulness of biological systems to humans. Primarily, I am referencing the lack of reference to plant and animal systems contributing to human nutrition, dietary needs, and the sustainability of the human race. Considerable reference is made to conserving resources and food webs and/or cycles, but specific reference to food and nutrition for humans is needed. In this regard, in High School curriculum, I am suggesting that Biology and Chemistry (Biochemistry or Metabolism) be integrated as a requirement, similarly to Integrated

Physics and Chemistry. There are many opportunities throughout the K-12 curriculum in which animal and human nutrition should be introduced.

4. Do the standards adequately address the broader concepts that cross various science disciplines (e.g., systems and system models, energy and matter, stability and change)?

From a basic science standpoint (earth sciences, physics, chemistry, space science), yes. Conversely, from an applied biological science standpoint, no. As previously mentioned, an added focus on biological sciences as well as life sciences (medicine, human nutrition, metabolism, genetics, and reproduction) is desperately needed. The greatest issue that the world is facing is population growth which will increase the need for education in the areas of biological disease (human, plant, and animal), both genetic and environmental, as well as nutrition (human and animal). Water quality and availability along with food production, safety, and quality are lacking and should be added to broaden the scope of science taught in K-12. Regardless of career and/or educational aspirations, all students leaving K-12 need greater information in these areas.

5. Are there topics that should be eliminated because they no longer reflect current research or practices within the field? If so, please identify.

Even though I am not suggesting any subtractions, I have questions about the resources provided to educators in K-12 to adequately address questions such as the one presented in 112.18.1.B.iii: "students should consider the ethical/social issues surrounding the Earth's natural energy resources, while looking at the advantages and disadvantages of their long term use". Or, "the student is expected to research and discuss the advantages and disadvantages of using coal, oil, natural gas, nuclear power, biomass, wind, hydropower, geothermal, and solar resources". Questions such as these are meaningful to society, but I would challenge the idea that educators have adequate resources and/or viewpoints to address these objectively, much less conduct research in this topic area.

6. Are the TEKS vertically aligned so that concepts are introduced, elaborated on, and refined across multiple grade levels and students will possess the necessary knowledge and skills to be successful in later grades?

Yes, they appear to be vertically aligned very well to the point that the exercises suggested (research, experiments, etc.) are very advanced. They are advanced to the point that I am skeptical of the resources and qualifications of K-12 facilities and educators to address and execute them. References to supporting materials for schools and educators are needed to accomplish and address these concepts.

7. Do the high school courses sufficiently prepare students for postsecondary success?

A complete execution of the concepts presented in Chapter 112 by any student would more than sufficiently prepare a grade 12 student for postsecondary success; however, due to the subjectivity of some of the concepts, resources for schools and educators must be extremely robust and consistent. The danger in teaching some of these concepts at such a demanding level is that misinformation and subjectivity in interpretation of research and/or experiments may lead to the development of bias in students that are entering the postsecondary education system and/or society in general. More so than the concepts to be taught, the materials being presented need to be science-based, objective, and consistent across all Texas and national schools. This committee

should evaluate the incorporation of suggested materials to accompany the expectations and outcomes suggested by this document.

8. The current K–5 science TEKS <u>encourage</u> districts to devote the percentage of instructional time to classroom and outdoor investigations as follows: kindergarten and grade 1–80%, grades 2 & 3–60%, grades 4 & 5–50%. The secondary science TEKS <u>require</u> districts to devote at least 40% of instructional time to laboratory and field investigations.

Are these designations and percentages for instructional time appropriate? Do the current student expectations adequately support the instruction?

A minimum of 40% experiential learning is critical, and 40% or more of hands-on, experiential learning should be maintained as a requirement in the curriculum. Often times resources (monetary and physical space/facilities) are the primary restriction for these opportunities in public education, therefore, maintaining these expectations, particularly in the area of science education, is critical in order to maintain this type of education as a priority for decision makers and budget prioritization. Guidelines for each grade level are seemingly appropriate based on the maturity and learning styles of the youth but should not necessarily be absolute. In other words, a grade 1 teacher should not have to instruct 80% of the science curriculum in an experiential fashion, if he or she does not have the resources (time and/or funds) to do so at a high level. This should serve as a guideline that allows for the better judgement of the educator and/or school administration.

9. Are the student expectations clear and specific? If not, please give examples of how the language might be improved.

The communication and examples are very clear and specific. Clarification of objectives and outcomes could be achieved by suggesting resources (teaching materials and/or examples of activities) directly in the document.

10. Are there student expectations that are not essential or unnecessarily duplicative and can be eliminated? If so, please identify by grade level/course and student expectation number.

For K and grade 1, the introductory statement (objective) is identical. This should be amended to reflect the progression of expectations from grade K to 1, even if it simply states that the objective is to repeat the approach take in grade K.

As previously stated, there is significant redundancy in the knowledge and skills portions of the document and could be consolidated at some point earlier in the document. For example: "demonstrate how to use, conserve, and dispose of natural resouces......".

11. What other suggestions do you have for ways in which the science TEKS can be improved?

This is my first time conducting an initial review. I have reviewed the document extensively, and I have reserved many points for in-person discussion. I am looking forward to my first meeting and the discussions that will occur there. Thank you!

Elementary

§112.A When when the Chapter 112. Texas Essential Knowledge and Skills for Science Subchapter A. Elementary Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code, §7.102(c)(4) and Subchapter A. Elementary Multiple Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code, §7.102(c)(4) and Subchapter A. Elementary Multiple Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code, §7.102(c)(4) and Subchapter A. Elementary Multiple Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code, §7.102(c)(4) and Subchapter A. Elementary Multiple Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code, §7.102(c)(4) and Subchapter A. Elementary Multiple Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code, §7.102(c)(4) and Subchapter A. Elementary Multiple Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code, §7.102(c)(4) and Subchapter A. Elementary Multiple Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code, §7.102(c)(4) and Subchapter A. Elementary Multiple Statutory Authority Sta

§112.10. Implementation of Texas Essential Knowledge and Skills for Science, Elementary, Adopted 2017.

The provisions of §§112.11-112.16 of this subchapter shall be implemented by school districts beginning with the 2018-2019 school year.

Source: The provisions of this §112.10 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 24, 2010, 35 TexReg 7230; amended to be effective August 27, 2018, 42 TexReg 5052.

§112.11. Science, Kindergarten, Adopted 2017.

- Introduction. (a)
- tion. In Kindergarten, students observe and describe the natural world using their senses. Students do science as inquiry in order to develop and enrich their abilities to understand scientific concepts and processes. Students develop vocabulary through their experiences investigating properties of (1)common objects, earth materials, and organisms.
 - A central theme throughout the study of scientific investigation and reasoning; matter and (A) energy; force, motion, and energy; Earth and space; and organisms and environment is active engagement in asking questions, creating a method to answer those questions, answering those questions, communicating ideas, and exploring with scientific tools. Scientific investigation and reasoning involves practicing safe procedures, asking questions about the natural world, and seeking answers to those questions through simple observations used in descriptive investigations.
 - (B) Matter is described in terms of its physical properties, including relative size, weight, shape, color, and texture. The importance of light, thermal, and sound energy is identified as it relates to the students' everyday life. The location and motion of objects are explored. Food, Safety, Clothing
 - Weather is recorded and discussed on a daily basis so students may begin to recognize (C) patterns in the weather. Other patterns are observed in the appearance of objects in the sky.
 - (D) In life science, students recognize the interdependence of organisms in the natural world. They understand that all organisms have basic needs that can be satisfied through interactions with living and nonliving things. Students will investigate the life cycle of plants and identify likenesses between parents and offspring.
 - Science, as defined by the National Academy of Sciences, is the "use of evidence to construct (2)testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process."
 - Recurring themes are pervasive in sciences, mathematics, and technology. These ideas transcend (3)disciplinary boundaries and include patterns, cycles, systems, models, and change and constancy.
 - The study of elementary science includes planning and safely implementing classroom and outdoor (4)investigations using scientific processes, including inquiry methods, analyzing information, making informed decisions, and using tools to collect and record information, while addressing the major concepts and vocabulary, in the context of physical, earth, and life sciences. Districts are encouraged to facilitate classroom and outdoor investigations for at least 80% of instructional time.

August 2018 Update

Animels?

Page 1

§112.A.

Suggest Muduchon t

§112.A.

Elementary

Statements containing the word "including" reference content that must be mastered, while those (5)containing the phrase "such as" are intended as possible illustrative examples.

(b) Knowledge and skills.

- Scientific investigation and reasoning. The student conducts classroom and outdoor investigations (1)following home and school safety procedures and uses environmentally appropriate and responsible practices. The student is expected to:
 - identify, discuss, and demonstrate safe and healthy practices as outlined in Texas (A) Education Agency-approved safety standards during classroom and outdoor investigations, including wearing safety goggles or chemical splash goggles, as appropriate, washing hands, and using materials appropriately; and
 - demonstrate how to use, conserve, and dispose of natural resources and materials such as (B) conserving water and reusing or recycling paper, plastic, and metal.
- Scientific investigation and reasoning. The student develops abilities to ask questions and seek (2)answers in classroom and outdoor investigations. The student is expected to:
 - ask questions about organisms, objects, and events observed in the natural world; (A)
 - (B) plan and conduct simple descriptive investigations;
 - Bibloguial ? Plants Janumals ? (C) collect data and make observations using simple tools;
 - (D) record and organize data and observations using pictures, numbers, and words; and
 - (E) communicate observations about simple descriptive investigations.
- Scientific investigation and reasoning. The student knows that information and critical thinking are (3) humanss on ecosystem used in scientific problem solving. The student is expected to:
 - identify and explain a problem such as the impact of littering and propose a solution; (A)
 - make predictions based on observable patterns in nature; and (B) Biology
 - (C) explore that scientists investigate different things in the natural world and use tools to help in their investigations.
- Scientific investigation and reasoning. The student uses age-appropriate tools and models to (4)investigate the natural world. The student is expected to:
 - collect information using tools, including computing devices, hand lenses, primary (A) balances, cups, bowls, magnets, collecting nets, and notebooks; timing devices; nonstandard measuring items; weather instruments such as demonstration thermometers; and materials to support observations of habitats of organisms such as terrariums and aquariums; and
 - (B) use the senses as a tool of observation to identify properties and patterns of organisms, objects, and events in the environment.
- Matter and energy. The student knows that objects have properties and patterns. The student is (5)expected to:
 - (A) observe and record properties of objects, including bigger or smaller, heavier or lighter, shape, color, and texture; and
 - observe, record, and discuss how materials can be changed by heating or cooling. (B)
- (6)Force, motion, and energy. The student knows that energy, force, and motion are related and are a part of their everyday life. The student is expected to:

(A) use the senses to explore different forms of energy such as light, thermal, and sound;

(B) explore interactions between magnets and various materials;

Page 2

Elementary

- (C) observe and describe the location of an object in relation to another such as above, below, behind, in front of, and beside; and
- (D) observe and describe the ways that objects can move such as in a straight line, zigzag, up and down, back and forth, round and round, and fast and slow.

(7)Earth and space. The student knows that the natural world includes earth materials. The student is expected to:

- (A) observe, describe, and sort rocks by size, shape, color, and texture;
- (B) observe and describe physical properties of natural sources of water, including color and clarity; and
- (C) give examples of ways rocks, soil, and water are useful.

Earth and space. The student knows that there are recognizable patterns in the natural world and (8)among objects in the sky. The student is expected to:

- (A) observe and describe weather changes from day to day and over seasons;
- (B) identify events that have repeating patterns, including seasons of the year and day and night; and
- (C) observe, describe, and illustrate objects in the sky such as the clouds, Moon, and stars, including the Sun.

Organisms and environments. The student knows that plants and animals have basic needs and depend on the living and nonliving things around them for survival. The student is expected to:

- differentiate between living and nonliving things based upon whether they have basic (A) needs and produce offspring; and
- (B) examine evidence that living organisms have basic needs such as food, water, and shelter for animals and air, water, nutrients, sunlight, and space for plants. 7 ten ?

Organisms and environments. The student knows that organisms resemble their parents and have (10)structures and processes that help them survive within their environments. The student is expected to:

- (A) sort plants and animals into groups based on physical characteristics such as color, size, body covering, or leaf shape;
- (B) identify basic parts of plants and animals;
- (C) identify ways that young plants resemble the parent plant; and
- (D) observe changes that are part of a simple life cycle of a plant: seed, seedling, plant, flower, and fruit.

Source: The provisions of this §112.11 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 27, 2018, 42 TexReg 5052.

§112.12. Science, Grade 1, Adopted 2017.

Introduction. (a)

- , Grade 1, Adopted 2017. tion. In Grade 1, students observe and describe the natural world using their senses. Students do science (1)as inquiry in order to develop and enrich their abilities to understand the world around them in the context of scientific concepts and processes. Students develop vocabulary through their experiences investigating properties of common objects, earth materials, and organisms.
 - (A) A central theme in first grade science is active engagement in asking questions, creating a method to answer those questions, answering those questions, communicating ideas, and exploring with scientific tools in order to explain scientific concepts and processes like

August 2018 Update

§112.A.

112.11.10 Sauce

scientific investigation and reasoning; matter and energy; force, motion, and energy; Earth and space; and organisms and environment. Scientific investigation and reasoning involves practicing safe procedures, asking questions about the natural world, and seeking answers to those questions through simple observations used in descriptive investigations.

- (B) Matter is described in terms of its physical properties, including relative size, weight, shape, color, and texture. The importance of light, thermal, and sound energy is identified as it relates to the students' everyday life. The location and motion of objects are explored.
- (C) Weather is recorded and discussed on a daily basis so students may begin to recognize patterns in the weather. In addition, patterns are observed in the appearance of objects in the sky.
- (D) In life science, students recognize the interdependence of organisms in the natural world. They understand that all organisms have basic needs that can be satisfied through interactions with living and nonliving things. Students will investigate life cycles of animals and identify likenesses between parents and offspring.
- (2) Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process."
- (3) Recurring themes are pervasive in sciences, mathematics, and technology. These ideas transcend disciplinary boundaries and include patterns, cycles, systems, models, and change and constancy.
- (4) The study of elementary science includes planning and safely implementing classroom and outdoor investigations using scientific processes, including inquiry methods, analyzing information, making informed decisions, and using tools to collect and record information, while addressing the major concepts and vocabulary, in the context of physical, earth, and life sciences. Districts are encouraged to facilitate classroom and outdoor investigations for at least 80% of instructional time.
- (5) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.
- (b) Knowledge and skills.

(2)

- Scientific investigation and reasoning. The student conducts classroom and outdoor investigations following home and school safety procedures and uses environmentally appropriate and responsible practices. The student is expected to:
 - (A) identify, discuss, and demonstrate safe and healthy practices as outlined in Texas Education agency-approved safety standards during classroom and outdoor investigations, including wearing safety goggles or chemical splash goggles, as appropriate, washing hands, and using materials appropriately; and
 - (B) identify and learn how to use natural resources and materials, including conservation and reuse or recycling of paper, plastic, and metals.

Scientific investigation and reasoning. The student develops abilities to ask questions and seek answers in classroom and outdoor investigations. The student is expected to:

- (A) ask questions about organisms, objects, and events observed in the natural world;
- (B) plan and conduct simple descriptive investigations;
- (C) collect data and make observations using simple tools;
- (D) record and organize data using pictures, numbers, and words; and
- (E) communicate observations and provide reasons for explanations using student-generated or data from simple descriptive investigations.

Elementary

physic46)

bte: Use of terms Choundry, Biology, Muysick

Scientific investigation and reasoning. The student knows that information and critical thinking are used in scientific problem solving. The student is expected to:

(A) identify and explain a problem and propose a solution;

(B) make predictions based on observable patterns; and

(C) describe what scientists do.

Scientific investigation and reasoning. The student uses age-appropriate tools and models to investigate the natural world. The student is expected to:

- (A) collect, record, and compare information using tools, including computers, hand lenses, primary balances, cups, bowls, magnets, collecting nets, notebooks, and safety goggles or chemical splash goggles, as appropriate; timing devices; non-standard measuring items; weather instruments such as demonstration thermometers and wind socks; and materials to support observations of habitats of organisms such as aquariums and terrariums; and
- (B) measure and compare organisms and objects using non-standard units.

(5) Matter and energy. The student knows that objects have properties and patterns. The student is expected to:

- (A) classify objects by observable properties such as larger and smaller, heavier and lighter, shape, color, and texture;
- (B) predict and identify changes in materials caused by heating and cooling; and
- (C) classify objects by the materials from which they are made.

Force, motion, and energy. The student knows that force, motion, and energy are related and are a part of everyday life. The student is expected to:

- (A) identify and discuss how different forms of energy such as light, thermal, and sound are important to everyday life;
- (B) predict and describe how a magnet can be used to push or pull an object; and
- (C) demonstrate and record the ways that objects can move such as in a straight line, zig zag, up and down, back and forth, round and round, and fast and slow.
- (7) Earth and space. The student knows that the natural world includes rocks, soil, and water that can be observed in cycles, patterns, and systems. The student is expected to:
 - (A) observe, compare, describe, and sort components of soil by size, texture, and color;
 - (B) identify and describe a variety of natural sources of water, including streams, lakes, and oceans; and
 - (C) identify how rocks, soil, and water are used to make products.
- (8) Earth and space. The student knows that the natural world includes the air around us and objects in the sky. The student is expected to:
 - (A) record weather information, including relative temperature such as hot or cold, clear or cloudy, calm or windy, and rainy or icy;
 - (B) observe and record changes in the appearance of objects in the sky such as the Moon and stars, including the Sun;
 - (C) identify characteristics of the seasons of the year and day and night; and
 - (D) demonstrate that air is all around us and observe that wind is moving air.
- (9) Organisms and environments. The student knows that the living environment is composed of relationships between organisms and the life cycles that occur. The student is expected to:

August 2018 Update

§112.A.

§112.A.

- sort and classify living and nonliving things based upon whether they have basic needs (A) and produce offspring;
- analyze and record examples of interdependence found in various situations such as (B)
- gather evidence of interdependence among living organisms such as energy transfer > petabolism (C) through food chains or animals using plants for shelter.
- (10)Organisms and environments. The student knows that organisms resemble their parents and have structures and processes that help them survive within their environments. The student is expected to:
 - investigate how the external characteristics of an animal are related to where it lives, how contribute it moves, and what it eats; identify and compare the parts of plants; compare ways that young animals resemble their parents; and (A)
 - (B)
 - (C)
 - (D) observe and record life cycles of animals such as a chicken, frog, or fish.

Source: The provisions of this §112.12 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 27, 2018, 42 TexReg 5052.

§112.13. Science, Grade 2, Adopted 2017.

- Introduction. (a)
 - In Grade 2, careful observation and investigation are used to learn about the natural world and (1)reveal patterns, changes, and cycles. Students should understand that certain types of questions can be answered by using observation and investigations and that the information gathered in these investigations may change as new observations are made. As students participate in investigation, they develop the skills necessary to do science as well as develop new science concepts.
 - A central theme throughout the study of scientific investigation and reasoning; matter and (A) energy; force, motion, and energy; Earth and space; and organisms and environment is active engagement in asking questions, creating a method to answer those questions, answering those questions, communicating ideas, and exploring with scientific tools. Scientific investigation and reasoning involves practicing safe procedures, asking questions about the natural world, and seeking answers to those questions through simple observations used in descriptive investigations.
 - Within the physical environment, students expand their understanding of the properties of (B) objects such as temperature, shape, and flexibility then use those properties to compare, classify, and then combine the objects to do something that they could not do before. Students manipulate objects to demonstrate a change in motion and position.
 - Within the natural environment, students will observe the properties of earth materials as (C) well as predictable patterns that occur on Earth and in the sky. The students understand that those patterns are used to make choices in clothing, activities, and transportation.
 - Within the living environment, students explore patterns, systems, and cycles by (D) investigating characteristics of organisms, life cycles, and interactions among all the components within their habitat. Students examine how living organisms depend on each other and on their environment.

Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process."

Recurring themes are pervasive in sciences, mathematics, and technology. These ideas transcend disciplinary boundaries and include patterns, cycles, systems, models, and change and constancy.

The study of elementary science includes planning and safely implementing classroom and outdoor investigations using scientific processes, including inquiry methods, analyzing information, making informed decisions, and using tools to collect and record information, while addressing the major concepts and vocabulary, in the context of physical, earth, and life sciences. Districts are encouraged to facilitate classroom and outdoor investigations for at least 60% of instructional time.

Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.

Knowledge and skills. (b)

(1)

(2)

Scientific

Scientific investigation and reasoning. The student conducts classroom and outdoor investigations following home and school safety procedures. The student is expected to:

identify, describe, and demonstrate safe practices as outlined in Texas Education Agency-(A) approved safety standards during classroom and outdoor investigations, including wearing safety goggles or chemical splash goggles, as appropriate, washing hands, and using

- materials appropriately; and (B) identify and demonstrate how to use, conserve, and dispose of natural resources and
- materials such as conserving water and reuse or recycling of paper, plastic, and metal.

Scientific investigation and reasoning. The student develops abilities necessary to do scientific inquiry in classroom and outdoor investigations. The student is expected to:

- ask questions about organisms, objects, and events during observations and (A) investigations;
- (B) plan and conduct descriptive investigations;
- (C) collect data from observations using scientific tools;
- (D) record and organize data using pictures, numbers, and words;
- (E) communicate observations and justify explanations using student-generated data from simple descriptive investigations; and
- (F) compare results of investigations with what students and scientists know about the world.
- Scientific investigation and reasoning. The student knows that information and critical thinking, (3)scientific problem solving, and the contributions of scientists are used in making decisions. The student is expected to:
 - (A) identify and explain a problem and propose a task and solution for the problem;
 - (B) make predictions based on observable patterns; and L
 - (C) identify what a scientist is and explore what different scientists do.
- (4)Scientific investigation and reasoning. The student uses age-appropriate tools and models to investigate the natural world. The student is expected to:
 - re- occurring collect, record, and compare information using tools, including computers, hand lenses, (A) rulers, plastic beakers, magnets, collecting nets, notebooks, and safety goggles or chemical splash goggles, as appropriate; timing devices; weather instruments such as thermometers, wind vanes, and rain gauges; and materials to support observations of habitats of organisms such as terrariums and aquariums; and
 - (B) measure and compare organisms and objects.
- Matter and energy. The student knows that matter has physical properties and those properties (5)determine how it is described, classified, changed, and used. The student is expected to:

§112.A.

- (A) classify matter by physical properties, including relative temperature, texture, flexibility, and whether material is a solid or liquid;
- (B) compare changes in materials caused by heating and cooling;
- (C) demonstrate that things can be done to materials such as cutting, folding, sanding, and melting to change their physical properties; and
- (D) combine materials that when put together can do things that they cannot do by themselves such as building a tower or a bridge and justify the selection of those materials based on their physical properties.
- (6) Force, motion, and energy. The student knows that forces cause change and energy exists in many forms. The student is expected to:
 - (A) investigate the effects on objects by increasing or decreasing amounts of light, heat, and sound energy such as how the color of an object appears different in dimmer light or how heat melts butter;
 - (B) observe and identify how magnets are used in everyday life; and
 - (C) trace and compare patterns of movement of objects such as sliding, rolling, and spinning over time.
- (7) Earth and space. The student knows that the natural world includes earth materials. The student is expected to:
 - (A) observe, describe, and compare rocks by size, texture, and color;
 - (B) identify and compare the properties of natural sources of freshwater and saltwater; and
 - (C) distinguish between natural and manmade resources.
- (8) Earth and space. The student knows that there are recognizable patterns in the natural world and among objects in the sky. The student is expected to:
 - (A) measure, record, and graph weather information, including temperature, wind conditions, precipitation, and cloud coverage, in order to identify patterns in the data;
 - (B) identify the importance of weather and seasonal information to make choices in clothing, activities, and transportation; and
 - (C) observe, describe, and record patterns of objects in the sky, including the appearance of the Moon.
- (9) Organisms and environments. The student knows that living organisms have basic needs that must be met for them to survive within their environment. The student is expected to:
 - (A) identify the basic needs of plants and animals;
 - (B) identify factors in the environment, including temperature and precipitation, that affect growth and behavior such as migration, hibernation, and dormancy of living things; and
- (C) compare the ways living organisms depend on each other and on their environments such as through food chains. Include humans? Astroit
- (10)
- Organisms and environments. The student knows that organisms resemble their parents and have structures and processes that help them survive within their environments. The student is expected to:
- (A) observe, record, and compare how the physical characteristics and behaviors of animals help them meet their basic needs;
- (B) observe, record, and compare how the physical characteristics of plants help them meet their basic needs such as stems carry water throughout the plant; and

Elementary

(C) investigate and record some of the unique stages that insects such as grasshoppers and butterflies undergo during their life cycle.

Source: The provisions of this §112.13 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 27, 2018, 42 TexReg 5052.

§112.14. Science, Grade 3, Adopted 2017.

(a) Introduction.

- (1) In Grade 3, students learn that the study of science uses appropriate tools and safe practices in planning and implementing investigations, asking and answering questions, collecting data by observing and measuring, and using models to support scientific inquiry about the natural world.
 - (A) Within the physical environment, students recognize that patterns, relationships, and cycles exist in matter. Students will investigate the physical properties of matter and will learn that changes occur. They explore mixtures and investigate light, sound, and thermal energy in everyday life. Students manipulate objects by pushing and pulling to demonstrate changes in motion and position.
 - (B) Within the natural environment, students investigate how the surface of Earth changes and provides resources that humans use. As students explore objects in the sky, they describe how relationships affect patterns and cycles on Earth. Students will construct models to demonstrate Sun, Earth, and Moon system relationships.
 - (C) Within the living environment, students explore patterns, systems, and cycles within environments by investigating characteristics of organisms, life cycles, and interactions among all components of the natural environment. Students examine how the environment plays a key role in survival. Students know that when changes in the environment occur organisms may thrive, become ill, or perish.
- (2) Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process."
- (3) Recurring themes are pervasive in sciences, mathematics, and technology. These ideas transcend disciplinary boundaries and include patterns, cycles, systems, models, and change and constancy.
- (4) The study of elementary science includes planning and safely implementing classroom and outdoor investigations using scientific practices, analyzing information, making informed decisions, and using tools to collect and record information while addressing the content and vocabulary in physical, earth, and life sciences. Districts are encouraged to facilitate classroom and outdoor investigations for at least 60% of instructional time.
- (5) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.
- (b) Knowledge and skills.
 - Scientific investigation and reasoning. The student conducts classroom and outdoor investigations following home and school safety procedures and environmentally appropriate practices. The student is expected to:

(A) demonstrate safe practices as described in Texas Education Agency-approved safety standards during classroom and outdoor investigations using safety equipment as appropriate, including safety goggles or chemical splash goggles, as appropriate, and gloves; and

(B) make informed choices in the use and conservation of natural resources by recycling or reusing materials such as paper, aluminum cans, and plastics.

August 2018 Update

Yedundan

In Conduct

Howare

§112.A.

- (2) Scientific investigation and reasoning. The student uses scientific practices during laboratory and outdoor investigations. The student is expected to:
 - (A) plan and implement descriptive investigations, including asking and answering questions, making inferences, and selecting and using equipment or technology needed, to solve a specific problem in the natural world;
 - (B) collect and record data by observing and measuring using the metric system and recognize differences between observed and measured data;
 - (C) construct maps, graphic organizers, simple tables, charts, and bar graphs using tools and current technology to organize, examine, and evaluate measured data;
 - D) analyze and interpret patterns in data to construct reasonable explanations based on evidence from investigations; ρ

demonstrate that repeated investigations may increase the reliability of results; and

communicate valid conclusions supported by data in writing, by drawing pictures, and through verbal discussion.

Scientific investigation and reasoning. The student knows that information, critical thinking, scientific problem solving, and the contributions of scientists are used in making decisions. The student is expected to:

- (A) analyze, evaluate, and critique scientific explanations by using evidence, logical reasoning, and experimental and observational testing;
- (B) represent the natural world using models such as volcanoes or the Sun, Earth, and Moon system and identify their limitations, including size, properties, and materials; and
- (C) connect grade-level appropriate science concepts with the history of science, science careers, and contributions of scientists.
- (4) Scientific investigation and reasoning. The student knows how to use a variety of tools and methods to conduct science inquiry. The student is expected to

(E) (F)

(3)

collect, record, and analyze information using tools, including cameras, computers, hand lenses, metric rulers, Celsius thermometers, wind vanes, rain gauges, pan balances, graduated cylinders, beakers, spring scales, hot plates, meter sticks, magnets, collecting nets, notebooks, and Sun, Earth, and Moon system models; timing devices; and materials to support observation of habitats of organisms such as terrariums and aquariums.

(5) Matter and energy. The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used. The student is expected to:

- (A) measure, test, and record physical properties of matter, including temperature, mass, magnetism, and the ability to sink or float;
- (B) describe and classify samples of matter as solids, liquids, and gases and demonstrate that solids have a definite shape and that liquids and gases take the shape of their container;
- (C) predict, observe, and record changes in the state of matter caused by heating or cooling such as ice becoming liquid water, condensation forming on the outside of a glass of ice water, or liquid water being heated to the point of becoming water vapor; and
- (D) explore and recognize that a mixture is created when two materials are combined such as gravel and sand or metal and plastic paper clips.
- (6) Force, motion, and energy. The student knows that forces cause change and that energy exists in many forms. The student is expected to:
 - explore different forms of energy, including mechanical, light, sound, and thermal in everyday life;

Page 10

Elementary

- (B) demonstrate and observe how position and motion can be changed by pushing and pulling objects such as swings, balls, and wagons; and
- (C) observe forces such as magnetism and gravity acting on objects.
- (7) Earth and space. The student knows that Earth consists of natural resources and its surface is constantly changing. The student is expected to:
 - (A) explore and record how soils are formed by weathering of rock and the decomposition of plant and animal remains;
 - (B) investigate rapid changes in Earth's surface such as volcanic eruptions, earthquakes, and landslides; and
 - (C) explore the characteristics of natural resources that make them useful in products and materials such as clothing and furniture and how resources may be conserved.
- (8) Earth and space. The student knows there are recognizable patterns in the natural world and among objects in the sky. The student is expected to:
 - (A) observe, measure, record, and compare day-to-day weather changes in different locations at the same time that include air temperature, wind direction, and precipitation;
 - (B) describe and illustrate the Sun as a star composed of gases that provides light and thermal energy;
 - (C) construct models that demonstrate the relationship of the Sun, Earth, and Moon, including orbits and positions; and
 - (D) identify the planets in Earth's solar system and their position in relation to the Sun.
- (9) Organisms and environments. The student knows and can describe patterns, cycles, systems, and relationships within the environments. The student is expected to:
 - (A) observe and describe the physical characteristics of environments and how they support populations and communities of plants and animals within an ecosystem;
 - (B) identify and describe the flow of energy in a food chain and predict how changes in a food chain affect the ecosystem such as removal of frogs from a pond or bees from a field; and field; and
 - (C) describe environmental changes such as floods and droughts where some organisms thrive and others perish or move to new locations.
- (10) Organisms and environments. The student knows that organisms undergo similar life processes and have structures that help them survive within their environments. The student is expected to:
 - (A) explore how structures and functions of plants and animals allow them to survive in a particular environment; and
 - (B) investigate and compare how animals and plants undergo a series of orderly changes in their diverse life cycles such as tomato plants, frogs, and lady beetles.

Source: The provisions of this §112.14 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 27, 2018, 42 TexReg 5052.

§112.15. Science, Grade 4, Adopted 2017.

- (a) Introduction.
 - (1) In Grade 4, investigations are used to learn about the natural world. Students should understand that certain types of questions can be answered by investigations and that methods, models, and conclusions built from these investigations change as new observations are made. Models of objects and events are tools for understanding the natural world and can show how systems work.

August 2018 Update

included in food de

Numang

§112.A.

Elementary

humans?

They have limitations and, based on new discoveries, are constantly being modified to more closely reflect the natural world.

- (A) Within the physical environment, students know about the physical properties of matter including mass, volume, states of matter, temperature, magnetism, and the ability to sink or float. Students will differentiate among forms of energy including mechanical, light, sound, and thermal energy. Students will explore electrical circuits and design descriptive investigations to explore the effect of force on objects.
- (B) Within the natural environment, students know that earth materials have properties that are constantly changing due to Earth's forces. The students learn that the natural world consists of resources, including renewable and nonrenewable, and their responsibility to conserve our natural resources for future generations. They will also explore Sun, Earth, and Moon relationships. The students will recognize that our major source of energy is the Sun.
- (C) Within the living environment, students know and understand that living organisms within an ecosystem interact with one another and with their environment. The students will recognize that plants and animals have basic needs, and they are met through a flow of energy known is food webs. Students will explore how all living organisms go through a life cycle and have structures that enable organisms to survive in their ecosystem.
- (2) Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process."
- (3) Recurring themes are pervasive in sciences, mathematics, and technology. These ideas transcend disciplinary boundaries and include patterns, cycles, systems, models, and change and constancy.
- (4) The study of elementary science includes planning and safely implementing classroom and outdoor investigations using scientific processes, including inquiry methods, analyzing information, making informed decisions, and using tools to collect and record information, while addressing the major concepts and vocabulary, in the context of physical, earth, and life sciences. Districts are encouraged to facilitate classroom and outdoor investigations for at least 50% of instructional time.
- (5) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.
- (b) Knowledge and skills.
 - (1) Scientific investigation and reasoning. The student conducts classroom and outdoor investigations, following home and school safety procedures and environmentally appropriate and ethical practices. The student is expected to:
 - (A) demonstrate safe practices and the use of safety equipment as described in Texas Education Agency-approved safety standards during classroom and outdoor investigations using safety equipment, including safety goggles or chemical splash goggles, as appropriate, and gloves, as appropriate; and
 - (B) make informed choices in the use and conservation of natural resources and reusing and recycling of materials such as paper, aluminum, glass, cans, and plastic.
 - (2) Scientific investigation and reasoning. The student uses scientific practices during laboratory and outdoor investigations. The student is expected to:
 - (A) plan and implement descriptive investigations, including asking well defined questions, making inferences, and selecting and using appropriate equipment or technology to answer his/her questions;
 - (B) collect and record data by observing and measuring, using the metric system, and using descriptive words and numerals such as labeled drawings, writing, and concept maps;

Page 12

Elementary

- (C) construct simple tables, charts, bar graphs, and maps using tools and current technology to organize, examine, and evaluate data;
- (D) analyze data and interpret patterns to construct reasonable explanations from data that can be observed and measured;
- (E) perform repeated investigations to increase the reliability of results; and
- (F) communicate valid oral and written results supported by data.
- (3) Scientific investigation and reasoning. The student uses critical thinking and scientific problem solving to make informed decisions. The student is expected to:
 - (A) analyze, evaluate, and critique scientific explanations by using evidence, logical reasoning, and experimental and observational testing;
 - (B) represent the natural world using models such as the water cycle and stream tables and identify their limitations, including accuracy and size; and
 - (C) connect grade-level appropriate science concepts with the history of science, science careers, and contributions of scientists.
- (4) Scientific investigation and reasoning. The student knows how to use a variety of tools, materials, equipment, and models to conduct science inquiry. The student is expected to

collect, record, and analyze information using tools, including calculators, microscopes, cameras, computers, hand lenses, metric rulers, Celsius thermometers, mirrors, spring scales, balances, graduated cylinders, beakers, hot plates, meter sticks, magnets, collecting nets, and notebooks; timing devices; and materials to support observation of habitats of organisms such as terrariums and aquariums.

- (5) Matter and energy. The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used. The student is expected to:
 - (A) measure, compare, and contrast physical properties of matter, including mass, volume, states (solid, liquid, gas), temperature, magnetism, and the ability to sink or float; and
 - (B) compare and contrast a variety of mixtures, including solutions.
- (6) Force, motion, and energy. The student knows that energy exists in many forms and can be observed in cycles, patterns, and systems. The student is expected to:
 - differentiate among forms of energy, including mechanical, sound, electrical, light, and thermal;
 - (B) differentiate between conductors and insulators of thermal and electrical energy;
 - (C) demonstrate that electricity travels in a closed path, creating an electrical circuit; and
 - (D) design a descriptive investigation to explore the effect of force on an object such as a push or a pull, gravity, friction, or magnetism.
- (7) Earth and space. The students know that Earth consists of useful resources and its surface is constantly changing. The student is expected to:
 - (A) examine properties of soils, including color and texture, capacity to retain water, and \bigvee ability to support the growth of plants;
 - (B) observe and identify slow changes to Earth's surface caused by weathering, erosion, and deposition from water, wind, and ice; and
 - (C) identify and classify Earth's renewable resources, including air, plants, water, and animals, and nonrenewable resources, including coal, oil, and natural gas, and the importance of conservation.

August 2018 Update

\$112.A.

010

(8)

(9)

(10)

- Earth and space. The student knows that there are recognizable patterns in the natural world and among the Sun, Earth, and Moon system. The student is expected to:
 - (A) measure, record, and predict changes in weather;
 - (B) describe and illustrate the continuous movement of water above and on the surface of Earth through the water cycle and explain the role of the Sun as a major source of energy in this process; and
 - (C) collect and analyze data to identify sequences and predict patterns of change in shadows, seasons, and the observable appearance of the Moon over time.

Organisms and environments. The student knows and understands that living organisms within an ecosystem interact with one another and with their environment. The student is expected to:

- (A) investigate that most producers need sunlight, water, and carbon dioxide to make their own food, while consumers are dependent on other organisms for food; and
- (B) describe the flow of energy through food webs, beginning with the Sun, and predict how changes in the ecosystem affect the food web.

Organisms and environments. The student knows that organisms undergo similar life processes and have structures and behaviors that help them survive within their environment. The student is expected to:

- (A) explore how structures and functions enable organisms to survive in their environment;
- (B) explore and describe examples of traits that are inherited from parents to offspring such as eye color and shapes of leaves and behaviors that are learned such as reading a book and a wolf pack teaching their pups to hunt effectively; and
- (C) explore, illustrate, and compare life cycles in living organisms such as beetles, crickets, radishes, or lima beans.

Source: The provisions of this §112.15 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 27, 2018, 42 TexReg 5052.

§112.16. Science, Grade 5, Adopted 2017.

(a) Introduction.

- (1) In Grade 5, scientific investigations are used to learn about the natural world. Students should understand that certain types of questions can be answered by investigations and that methods, models, and conclusions built from these investigations change as new observations are made. Models of objects and events are tools for understanding the natural world and can show how systems work. They have limitations and based on new discoveries are constantly being modified to more closely reflect the natural world.
 - (A) Within the physical environment, students learn about the physical properties of matter, including magnetism, mass, physical states of matter, relative density, solubility in water, and the ability to conduct or insulate electrical and thermal energy. Students explore the uses of light, thermal, electrical, mechanical, and sound energies.
 - (B) Within the natural environment, students learn how changes occur on Earth's surface and that predictable patterns occur in the sky. Students learn that the natural world consists of resources, including nonrenewable and renewable.
 - (C) Within the living environment, students learn that structure and function of organisms can improve the survival of members of a species. Students learn to differentiate between inherited traits and learned behaviors.

Page 14

Elementary

(2)

- Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process."
- (3) Recurring themes are pervasive in sciences, mathematics, and technology. These ideas transcend disciplinary boundaries and include patterns, cycles, systems, models, and change and constancy.
- (4) The study of elementary science includes planning and safely implementing classroom and outdoor investigations using scientific processes, including inquiry methods, analyzing information, making informed decisions, and using tools to collect and record information, while addressing the major concepts and vocabulary, in the context of physical, earth, and life sciences. Districts are encouraged to facilitate classroom and outdoor investigations for at least 50% of instructional time.
- (5) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.
- (b) Knowledge and skills.
 - Scientific investigation and reasoning. The student conducts classroom and outdoor investigations following home and school safety procedures and environmentally appropriate and ethical practices. The student is expected to:
 - (A) demonstrate safe practices and the use of safety equipment as outlined in Texas Education Agency-approved safety standards during classroom and outdoor investigations using safety equipment, including safety goggles or chemical splash goggles, as appropriate, and gloves, as appropriate; and
 - (B) make informed choices in the conservation, disposal, and recycling of materials.
 - (2) Scientific investigation and reasoning. The student uses scientific practices during laboratory and outdoor investigations. The student is expected to:
 - (A) describe, plan, and implement simple experimental investigations testing one variable;
 - (B) ask well defined questions, formulate testable hypotheses, and select and use appropriate equipment and technology;
 - (C) collect and record information using detailed observations and accurate measuring;
 - (D) analyze and interpret information to construct reasonable explanations from direct (observable) and indirect (inferred) evidence;
 - (E) demonstrate that repeated investigations may increase the reliability of results;
 - (F) communicate valid conclusions in both written and verbal forms; and
 - (G) construct appropriate simple graphs, tables, maps, and charts using technology, including computers, to organize, examine, and evaluate information.
 - (3) Scientific investigation and reasoning. The student uses critical thinking and scientific problem solving to make informed decisions. The student is expected to:
 - (A) analyze, evaluate, and critique scientific explanations by using evidence, logical reasoning, and experimental and observational testing;
 - (B) draw or develop a model that represents how something that cannot be seen such as the Sun, Earth, and Moon system and formation of sedimentary rock works or looks; and
 - (C) connect grade-level appropriate science concepts with the history of science, science careers, and contributions of scientists.
 - (4) Scientific investigation and reasoning. The student knows how to use a variety of tools and methods to conduct science inquiry. The student is expected to

August 2018 Update

§112.A.

(6)

collect, record, and analyze information using tools, including calculators, microscopes, cameras, computers, hand lenses, metric rulers, Celsius thermometers, prisms, mirrors, balances, spring scales, graduated cylinders, beakers, hot plates, meter sticks, magnets, collecting nets, and notebooks; timing devices; and materials to support observations of habitats or organisms such as terrariums and aquariums.

- (5) Matter and energy. The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used. The student is expected to:
 - (A) classify matter based on measurable, testable, and observable physical properties, including mass, magnetism, physical state (solid, liquid, and gas), relative density (sinking and floating using water as a reference point), solubility in water, and the ability to conduct or insulate thermal energy or electric energy;
 - (B) demonstrate that some mixtures maintain physical properties of their ingredients such as iron filings and sand and water; and
 - (C) identify changes that can occur in the physical properties of the ingredients of solutions such as dissolving salt in water or adding lemon juice to water.

Force, motion, and energy. The student knows that energy occurs in many forms and can be observed in cycles, patterns, and systems. The student is expected to:

- (A) explore the uses of energy, including mechanical, light, thermal, electrical, and sound energy;
- (B) demonstrate that the flow of electricity in closed circuits can produce light, heat, or sound;
- (C) demonstrate that light travels in a straight line until it strikes an object and is reflected or travels through one medium to another and is refracted; and
- (D) design a simple experimental investigation that tests the effect of force on an object.
- (7) Earth and space. The student knows Earth's surface is constantly changing and consists of useful resources. The student is expected to:
 - (A) explore the processes that led to the formation of sedimentary rocks and fossil fuels; and
 - (B) recognize how landforms such as deltas, canyons, and sand dunes are the result of changes to Earth's surface by wind, water, or ice.
- (8) Earth and space. The student knows that there are recognizable patterns in the natural world and among the Sun, Earth, and Moon system. The student is expected to:
 - (A) differentiate between weather and climate;
 - (B) explain how the Sun and the ocean interact in the water cycle;
 - (C) demonstrate that Earth rotates on its axis once approximately every 24 hours causing the day/night cycle and the apparent movement of the Sun across the sky; and
 - (D) identify and compare the physical characteristics of the Sun, Earth, and Moon.
- (9) Organisms and environments. The student knows that there are relationships, systems, and cycles within environments. The student is expected to:
 - (A) observe the way organisms live and survive in their ecosystem by interacting with the living and nonliving components;
 - (B) describe the flow of energy within a food web, including the roles of the Sun, producers, consumers, and decomposers;
 - (C) predict the effects of changes in ecosystems caused by living organisms, including humans, such as the overpopulation of grazers or the building of highways; and

Awesome, Where is the teaching Material commy from?

Initial Review, January 2020

Page 16

Science

Elementary

- (D) identify fossils as evidence of past living organisms and the nature of the environments at the time using models.
- (10) Organisms and environments. The student knows that organisms have structures and behaviors that help them survive within their environments. The student is expected to:
 - (A) compare the structures and functions of different species that help them live and survive in a specific environment such as hooves on prairie animals or webbed feet in aquatic animals; and
 - animals; and *questics vs environ* (B) differentiate between inherited traits of plants and animals such as spines on a cactus or shape of a beak and learned behaviors such as an animal learning tricks or a child riding a bicycle.

Source: The provisions of this §112.16 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 27, 2018, 42 TexReg 5052.

Middle School

Chapter 112. Texas Essential Knowledge and Skills for Science

Subchapter B. Middle School

Statutory Authority: The provisions of this Subchapter B issued under the Texas Education Code, $\S7.102(c)(4)$ and \$28.002, unless otherwise noted.

§112.17. Implementation of Texas Essential Knowledge and Skills for Science, Middle School, Adopted 2017.

The provisions of §§112.18-112.20 of this subchapter shall be implemented by school districts beginning with the 2018-2019 school year.

Source: The provisions of this §112.17 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 24, 2010, 35 TexReg 7230; amended to be effective August 27, 2018, 42 TexReg 5052.

§112.18. Science, Grade 6, Adopted 2017.

- (a) Introduction.
 - (1) Grade 6 science is interdisciplinary in nature; however, much of the content focus is on physical science. National standards in science are organized as multi-grade blocks such as Grades 5-8 rather than individual grade levels. In order to follow the grade level format used in Texas, the various national standards are found among Grades 6, 7, and 8. Recurring themes are pervasive in sciences, mathematics, and technology. These ideas transcend disciplinary boundaries and include change and constancy, patterns, cycles, systems, models, and scale.

The strands for Grade 6 include the following.

- (A) Scientific investigations and reasoning.
 - (i) To develop a rich knowledge of science and the natural world, students must become familiar with different modes of scientific inquiry, rules of evidence, ways of formulating questions, ways of proposing explanations, and the diverse ways scientists study the natural world and propose explanations based on evidence derived from their work.
 - (ii) Scientific investigations are conducted for different reasons. All investigations require a research question, careful observations, data gathering, and analysis of the data to identify the patterns that will explain the findings. Descriptive investigations are used to explore new phenomena such as conducting surveys of organisms or measuring the abiotic components in a given habitat. Descriptive statistics include frequency, range, mean, median, and mode. A hypothesis is not required in a descriptive investigation. On the other hand, when conditions can be controlled in order to focus on a single variable, experimental research design is used to determine causation. Students should experience both types of investigations and understand that different scientific research questions require different research designs.
 - (iii) Scientific investigations are used to learn about the natural world. Students should understand that certain types of questions can be answered by investigations, and the methods, models, and conclusions built from these investigations change as new observations are made. Models of objects and events are tools for understanding the natural world and can show how systems work. Models have limitations and based on new discoveries are constantly being modified to more closely reflect the natural world.
- (B) Matter and energy.

§112.B.

Middle School

- (i) Matter can be classified as elements, compounds, or mixtures. Students have already had experience with mixtures in Grade 5, so Grade 6 will concentrate on developing an understanding of elements and compounds. It is important that students learn the differences between elements and compounds based on observations, description of physical properties, and chemical reactions. Elements are represented by chemical symbols, while compounds are represented by chemical formulas. Subsequent grades will learn about the differences at the molecular and atomic level.
- (ii) Elements are classified as metals, nonmetals, and metalloids based on their physical properties. The elements are divided into three groups on the Periodic Table. Each different substance usually has a different density, so density can be used as an identifying property. Therefore, calculating density aids classification of substances.
- of substances.
 (iii) Energy resources are available on a renewable or nonrenewable basis.
 Understanding the origins and uses of these resources enables informed decision making. Students should consider the ethical/social issues surrounding Earth's natural energy resources, while looking at the advantages and disadvantages of their long-term uses.
- (C) Force, motion, and energy. Energy occurs in two types, potential and kinetic, and can take several forms. Thermal energy can be transferred by conduction, convection, or radiation. It can also be changed from one form to another. Students will investigate the relationship between force and motion using a variety of means, including calculations and measurements.
- (D) Earth and space. The focus of this strand is on introducing Earth's processes. Students should develop an understanding of Earth as part of our solar system. The topics include organization of our solar system, the role of gravity, and space exploration.
- (E) Organisms and environments. Students will gain an understanding of the broadest taxonomic classifications of organisms and how characteristics determine their classification. The other major topics developed in this strand include the interdependence between organisms and their environments and the levels of organization within an ecosystem.
- (2) Science, as defined by the National Academy of Science, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process." This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models. Students should know that some questions are outside the realm of science because they deal with phenomena that are not scientifically testable.
- (3) Scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power that have been tested over a wide variety of conditions become theories. Scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Students should know that scientific theories, unlike hypotheses, are well established and highly reliable, but they may still be subject to change as new information and technologies are developed. Students should be able to distinguish between scientific decision-making methods and ethical/social decisions that involve the application of scientific information.
- (4) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.

(b) Knowledge and skills.

- Grb
- (1) Scientific investigation and reasoning. The student, for at least 40% of instructional time, conducts laboratory and field investigations following safety procedures and environmentally appropriate and ethical practices. The student is expected to:

Page 2

Middle School

(3)

- (A) demonstrate safe practices during laboratory and field investigations as outlined in Texas Education Agency-approved safety standards; and
- (B) practice appropriate use and conservation of resources, including disposal, reuse, or recycling of materials.
- (2) Scientific investigation and reasoning. The student uses scientific practices during laboratory and field investigations. The student is expected to:
 - (A) plan and implement comparative and descriptive investigations by making observations, asking well defined questions, and using appropriate equipment and technology;
 - (B) design and implement experimental investigations by making observations, asking well defined questions, formulating testable hypotheses, and using appropriate equipment and technology;
 - (C) collect and record data using the International System of Units (SI) and qualitative means such as labeled drawings, writing, and graphic organizers;
 - (D) construct tables and graphs, using repeated trials and means, to organize data and identify patterns; and
 - (E) analyze data to formulate reasonable explanations, communicate valid conclusions supported by the data, and predict trends.

Scientific investigation and reasoning. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions and knows the contributions of relevant scientists. The student is expected to:

- (A) analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, so as to encourage critical thinking by the student;
- (B) use models to represent aspects of the natural world such as a model of Earth's layers;
- (C) identify advantages and limitations of models such as size, scale, properties, and materials; and
- (D) relate the impact of research on scientific thought and society, including the history of science and contributions of scientists as related to the content.
- (4) Scientific investigation and reasoning. The student knows how to use a variety of tools and safety equipment to conduct science inquiry. The student is expected to:
 - (A) use appropriate tools, including journals/notebooks, beakers, Petri dishes, meter sticks, graduated cylinders, hot plates, test tubes, balances, microscopes, thermometers, calculators, computers, timing devices, and other necessary equipment to collect, record, and analyze information; and
 - (B) use preventative safety equipment, including chemical splash goggles, aprons, and gloves, and be prepared to use emergency safety equipment, including an eye/face wash, a fire blanket, and a fire extinguisher.
- (5) Matter and energy. The student knows the differences between elements and compounds. The student is expected to:
 - (A) know that an element is a pure substance represented by a chemical symbol and that a compound is a pure substance represented by a chemical formula;
 - (B) recognize that a limited number of the many known elements comprise the largest portion of solid Earth, living matter, oceans, and the atmosphere; and

§112.B.

(6)

Can they

(C) identify the formation of a new substance by using the evidence of a possible chemical change such as production of a gas, change in temperature, production of a precipitate, or color change.

Matter and energy. The student knows matter has physical properties that can be used for classification. The student is expected to:

- compare metals, nonmetals, and metalloids using physical properties such as luster, (A) conductivity, or malleability;
- (B) calculate density to identify an unknown substance; and
- (C) test the physical properties of minerals, including hardness, color, luster, and streak.
- (7)Matter and energy. The student knows that some of Earth's energy resources are available on a nearly perpetual basis, while others can be renewed over a relatively short period of time. Some energy resources, once depleted, are essentially nonrenewable. The student is expected to

research and discuss the advantages and disadvantages of using coal, oil, natural gas, nuclear power, biomass, wind, hydropower, geothermal, and solar resources

really research this Force, motion, and energy. The student knows force and motion are related to potential and kinetic energy. The student is expected to:

- compare and contrast potential and kinetic energy; (A)
- (B) identify and describe the changes in position, direction, and speed of an object when acted upon by unbalanced forces;
- calculate average speed using distance and time measurements; (C)
- (D) measure and graph changes in motion; and
- (E) investigate how inclined planes can be used to change the amount of force to move an object.

(9) Force, motion, and energy. The student knows that the Law of Conservation of Energy states that energy can neither be created nor destroyed, it just changes form. The student is expected to:

- investigate methods of thermal energy transfer, including conduction, convection, and (A) radiation;
- (B) verify through investigations that thermal energy moves in a predictable pattern from warmer to cooler until all the substances attain the same temperature such as an ice cube melting; and
- (C) demonstrate energy transformations such as energy in a flashlight battery changes from chemical energy to electrical energy to light energy.
- (10)Earth and space. The student understands the structure of Earth, the rock cycle, and plate tectonics. The student is expected to:
 - (A) build a model to illustrate the compositional and mechanical layers of Earth, including the inner core, outer core, mantle, crust, asthenosphere, and lithosphere;
 - (B) classify rocks as metamorphic, igneous, or sedimentary by the processes of their formation:
 - identify the major tectonic plates, including Eurasian, African, Indo-Australian, Pacific, (C) North American, and South American; and
 - (D) describe how plate tectonics causes major geological events such as ocean basin formation, earthquakes, volcanic eruptions, and mountain building.

Middle School

- (11) Earth and space. The student understands the organization of our solar system and the relationships among the various bodies that comprise it. The student is expected to:
 - (A) describe the physical properties, locations, and movements of the Sun, planets, moons, meteors, asteroids, and comets;
 - (B) understand that gravity is the force that governs the motion of our solar system; and
 - (C) describe the history and future of space exploration, including the types of equipment and transportation needed for space travel.
- (12) Organisms and environments. The student knows all organisms are classified into domains and kingdoms. Organisms within these taxonomic groups share similar characteristics that allow them to interact with the living and nonliving parts of their ecosystem. The student is expected to:
 - (A) understand that all organisms are composed of one or more cells;
 - (B) recognize that the presence of a nucleus is a key factor used to determine whether a cell is prokaryotic or eukaryotic;
 - (C) recognize that the broadest taxonomic classification of living organisms is divided into currently recognized domains;
 - (D) identify the basic characteristics of organisms, including prokaryotic or eukaryotic, unicellular or multicellular, autotrophic or heterotrophic, and mode of reproduction, that further classify them in the currently recognized kingdoms;
 - (E) describe biotic and abiotic parts of an ecosystem in which organisms interact; and
 - (F) diagram the levels of organization within an ecosystem, including organism, population, community, and ecosystem.

Source: The provisions of this §112.18 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 27, 2018, 42 TexReg 5052.

§112.19. Science, Grade 7, Adopted 2017.

(a) Introduction.

(1) Grade 7 science is interdisciplinary in nature; however, much of the content focus is on organisms and the environment. National standards in science are organized as multi-grade blocks such as Grades 5-8 rather than individual grade levels. In order to follow the grade level format used in Texas, the various national standards are found among Grades 6, 7, and 8. Recurring themes are pervasive in sciences, mathematics, and technology. These ideas transcend disciplinary boundaries and include change and constancy, patterns, cycles, systems, models, and scale.

The strands for Grade 7 include the following.

- (A) Scientific investigation and reasoning.
 - (i) To develop a rich knowledge of science and the natural world, students must become familiar with different modes of scientific inquiry, rules of evidence, ways of formulating questions, ways of proposing explanations, and the diverse ways scientists study the natural world and propose explanations based on evidence derived from their work.
 - (ii) Scientific investigations are conducted for different reasons. All investigations require a research question, careful observations, data gathering, and analysis of the data to identify the patterns that will explain the findings. Descriptive investigations are used to explore new phenomena such as conducting surveys of organisms or measuring the abiotic components in a given habitat. Descriptive statistics include frequency, range, mean, median, and mode. A hypothesis is not required in a descriptive investigation. On the other hand, when conditions can

§112.B.

be controlled in order to focus on a single variable, experimental research design is used to determine causation. Students should experience both types of investigations and understand that different scientific research questions require different research designs.

(iii) Scientific investigations are used to learn about the natural world. Students should understand that certain types of questions can be answered by investigations, and the methods, models, and conclusions built from these investigations change as new observations are made. Models of objects and events are tools for understanding the natural world and can show how systems work. Models have limitations and based on new discoveries are constantly being modified to more closely reflect the natural world.

(B) Matter and energy. Matter and energy are conserved throughout living systems. Radiant energy from the Sun drives much of the flow of energy throughout living systems due to the process of photosynthesis in organisms described as producers. Most consumers then depend on producers to meet their energy needs. Subsequent grade levels will learn about the differences at the molecular and atomic level.

(C) Force, motion, and energy. Force, motion, and energy are observed in living systems and the environment in several ways. Interactions between muscular and skeletal systems allow the body to apply forces and transform energy both internally and externally. Force and motion can also describe the direction and growth of seedlings, turgor pressure, and geotropism. Catastrophic events of weather systems such as hurricanes, floods, and tornadoes can shape and restructure the environment through the force and motion evident in them. Weathering, erosion, and deposition occur in environments due to the forces of gravity, wind, ice, and water.

- (D) Earth and space. Earth and space phenomena can be observed in a variety of settings. Both natural events and human activities can impact Earth systems. There are characteristics of Earth and relationships to objects in our solar system that allow life to exist.
- (E) Organisms and environments.

(i)

Students will understand the relationship between living organisms and their environment. Different environments support different living organisms that are adapted to that region of Earth. Organisms are living systems that maintain a steady state with that environment and whose balance may be disrupted by internal and external stimuli. External stimuli include human activity or the environment. Successful organisms can reestablish a balance through different processes such as a feedback mechanism. Ecological succession can be seen on a broad or small scale.

Students learn that all organisms obtain energy, get rid of wastes, grow, and reproduce. During both sexual and asexual reproduction, traits are passed onto the next generation. These traits are contained in genetic material that is found on genes within a chromosome from the parent. Changes in traits sometimes occur in a population over many generations. One of the ways a change can occur is through the process of natural selection. Students extend their understanding of structures in living systems from a previous focus on external structures to an understanding of internal structures and functions within living things.

All living organisms are made up of smaller units called cells. All cells use energy, get rid of wastes, and contain genetic material. Students will compare plant and animal cells and understand the internal structures within them that allow them to obtain energy, get rid of wastes, grow, and reproduce in different ways. Cells can organize into tissues, tissues into organs, and organs into organ

(b)

Middle School

systems. Students will learn the major functions of human body systems such as the ability of the integumentary system to protect against infection, injury, and ultraviolet (UV) radiation; regulate body temperature; and remove waste.

(2) Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process." This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models. Students should know that some questions are outside the realm of science because they deal with phenomena that are not scientifically testable.

(3) Scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power that have been tested over a wide variety of conditions become theories. Scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Students should know that scientific theories, unlike hypotheses, are well established and highly reliable, but they may still be subject to change as new information and technologies are developed. Students should be able to distinguish between scientific decision-making methods and ethical/social decisions that involve the application of scientific information.

(4) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.

Knowledge and skills.

(1)

- Scientific investigation and reasoning. The student, for at least 40% of the instructional time, Gr \mathcal{F} conducts laboratory and field investigations following safety procedures and environmentally appropriate and ethical practices. The student is expected to:
 - (A) demonstrate safe practices during laboratory and field investigations as outlined in Texas Education Agency-approved safety standards; and
 - (B) practice appropriate use and conservation of resources, including disposal, reuse, or recycling of materials.
- (2) Scientific investigation and reasoning. The student uses scientific practices during laboratory and field investigations. The student is expected to:
 - (A) plan and implement comparative and descriptive investigations by making observations, asking well defined questions, and using appropriate equipment and technology;
 - (B) design and implement experimental investigations by making observations, asking well defined questions, formulating testable hypotheses, and using appropriate equipment and technology;
 - (C) collect and record data using the International System of Units (SI) and qualitative means such as labeled drawings, writing, and graphic organizers;
 - (D) construct tables and graphs, using repeated trials and means, to organize data and identify patterns; and
 - (E) analyze data to formulate reasonable explanations, communicate valid conclusions supported by the data, and predict trends.
- (3) Scientific investigation and reasoning. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions and knows the contributions of relevant scientists. The student is expected to:
 - (A) analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, so as to encourage critical thinking by the student;

§112.B.

lofe: Where day the interpretation of exists

J

§112.B.

Middle School

- use models to represent aspects of the natural world such as human body systems and (B) 77 Self experiments plant and animal cells:
- (C) identify advantages and limitations of models such as size, scale, properties, and materials; and

relate the impact of research on scientific thought and society, including the history of (D) science and contributions of scientists as related to the content.

- (4)Science investigation and reasoning. The student knows how to use a variety of tools and safety equipment to conduct science inquiry. The student is expected to:
 - use appropriate tools, including life science models, hand lenses, stereoscopes, (A) microscopes, beakers, Petri dishes, microscope slides, graduated cylinders, test tubes, meter sticks, metric rulers, metric tape measures, timing devices, hot plates, balances, thermometers, calculators, water test kits, computers, temperature and pH probes, collecting nets, insect traps, globes, digital cameras, journals/notebooks, and other necessary equipment to collect, record, and analyze information; and
 - (B) use preventative safety equipment, including chemical splash goggles, aprons, and gloves, and be prepared to use emergency safety equipment, including an eye/face wash, a fire blanket, and a fire extinguisher.
- (5)Matter and energy. The student knows that interactions occur between matter and energy. The student is expected to:
 - recognize that radiant energy from the Sun is transformed into chemical energy through (A) the process of photosynthesis; and
 - (B) diagram the flow of energy through living systems, including food chains, food webs, and energy pyramids.

(6)Matter and energy. The student knows that matter has physical and chemical properties and can undergo physical and chemical changes. The student is expected to

distinguish between physical and chemical changes in matter.

- (7)Force, motion, and energy. The student knows that there is a relationship among force, motion, and energy. The student is expected to:
 - illustrate the transformation of energy within an organism such as the transfer from (A) chemical energy to thermal energy; and
 - (B) demonstrate and illustrate forces that affect motion in organisms such as emergence of seedlings, turgor pressure, geotropism, and circulation of blood.
- (8)Earth and space. The student knows that natural events and human activity can impact Earth systems. The student is expected to:
 - (A) predict and describe how catastrophic events such as floods, hurricanes, or tornadoes impact ecosystems;
 - (B) analyze the effects of weathering, erosion, and deposition on the environment in ecoregions of Texas; and
 - (C) model the effects of human activity on groundwater and surface water in a watershed.
- (9) Earth and space. The student knows components of our solar system. The student is expected to:
 - analyze the characteristics of objects in our solar system that allow life to exist such as the (A) proximity of the Sun, presence of water, and composition of the atmosphere; and
 - (B) identify the accommodations, considering the characteristics of our solar system, that enabled manned space exploration.

Chr 1 (1) 1 Broneer

Middle School

(10)

(A)

(B)

Organisms and environments. The student knows that there is a relationship between organisms and the environment. The student is expected to:

- observe and describe how different environments, including microhabitats in schoolyards (A) and biomes, support different varieties of organisms;
- (B) describe how biodiversity contributes to the sustainability of an ecosystem; and
- observe, record, and describe the role of ecological succession such as in a microhabitat (C) of a garden with weeds.
- Organisms and environments. The student knows that populations and species demonstrate (11)variation and inherit many of their unique traits through gradual processes over many generations. The student is expected to:
 - examine organisms or their structures such as insects or leaves and use dichotomous keys (A) for identification:
 - explain variation within a population or species by comparing external features, behaviors, or physiology of organisms that enhance their survival such as migration, hibernation, or storage of food in a bulb; and

identify some changes in genetic traits that have occurred over several generations through natural selection and selective breeding such as the Galapagos Medium Ground Finch (Geospiza fortis) or domestic animals and hybrid plants.

(E Janetics and / in plants of anna (C) Organisms and environments. The student knows that living systems at all levels of organization demonstrate the complementary nature of structure and function. The student is expected to:

investigate and explain how internal structures of organisms have adaptations that allow specific functions such as gills in fish, hollow bones in birds, or xylem in plants;

identify the main functions of the systems of the human organism, including the circulatory, respiratory, skeletal, muscular, digestive, excretory, reproductive, integumentary, nervous, and endocrine systems;

- recognize levels of organization in plants and animals, including cells, tissues, organs, (C) organ systems, and organisms;
- (D) differentiate between structure and function in plant and animal cell organelles, including cell membrane, cell wall, nucleus, cytoplasm, mitochondrion, chloroplast, and vacuole;
- (E) compare the functions of cell organelles to the functions of an organ system; and
- (F) recognize the components of cell theory.
- Organisms and environments. The student knows that a living organism must be able to maintain balance in stable internal conditions in response to external and internal stimuli. The student is expected to:
 - (A) investigate how organisms respond to external stimuli found in the environment such as phototropism and fight or flight; and
 - describe and relate responses in organisms that may result from internal stimuli such as (B) wilting in plants and fever or vomiting in animals that allow them to maintain balance.
- (14)Organisms and environments. The student knows that reproduction is a characteristic of living organisms and that the instructions for traits are governed in the genetic material. The student is expected to:
 - (A) define heredity as the passage of genetic instructions from one generation to the next generation;

August 2018 Update

(13)

§112.B.

§112.B. Avade t

Space (Science **Middle School**

compare the results of uniform or diverse offspring from asexual or sexual reproduction; and

(C) recognize that inherited traits of individuals are governed in the genetic material found in the genes within chromosomes in the nucleus.

Source: The provisions of this §112.19 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 27, 2018, 42 TexReg 5052.

§112.20. Science, Grade 8, Adopted 2017.

(B)

(a) Introduction. (1) Gra

Grade 8 science is interdisciplinary in nature; however, much of the content focus is on earth and space science. National standards in science are organized as multi-grade blocks such as Grades 5-8 rather than individual grade levels. In order to follow the grade level format used in Texas, the various national standards are found among Grades 6, 7, and 8. Recurring themes are pervasive in sciences, mathematics, and technology. These ideas transcend disciplinary boundaries and include change and constancy, patterns, cycles, systems, models, and scale.

The strands for Grade 8 include the following.

- (A) Scientific investigation and reasoning.
 - (i) To develop a rich knowledge of science and the natural world, students must become familiar with different modes of scientific inquiry, rules of evidence, ways of formulating questions, ways of proposing explanations, and the diverse ways scientists study the natural world and propose explanations based on evidence derived from their work.
 - (ii) Scientific investigations are conducted for different reasons. All investigations require a research question, careful observations, data gathering, and analysis of the data to identify the patterns that will explain the findings. Descriptive investigations are used to explore new phenomena such as conducting surveys of organisms or measuring the abiotic components in a given habitat. Descriptive statistics include frequency, range, mean, median, and mode. A hypothesis is not required in a descriptive investigation. On the other hand, when conditions can be controlled in order to focus on a single variable, experimental research design is used to determine causation. Students should experience both types of investigations and understand that different scientific research questions require different research designs.
 - (iii) Scientific investigations are used to learn about the natural world. Students should understand that certain types of questions can be answered by investigations, and the methods, models, and conclusions built from these investigations change as new observations are made. Models of objects and events are tools for understanding the natural world and can show how systems work. Models have limitations and based on new discoveries are constantly being modified to more closely reflect the natural world.
- (B) Matter and energy. Students recognize that matter is composed of atoms. Students examine information on the Periodic Table to recognize that elements are grouped into families. In addition, students understand the basic concept of conservation of mass. Lab activities will allow students to demonstrate evidence of chemical reactions. They will use chemical formulas to identify substances.
- (C) Force, motion, and energy. Students experiment with the relationship between forces and motion through the study of Newton's three laws. Students learn how these forces relate to geologic processes and astronomical phenomena. In addition, students recognize that

Page 10

Middle School

(D)

these laws are evident in everyday objects and activities. Mathematics is used to calculate speed using distance and time measurements.

Earth and space. Students identify the role of natural events in altering Earth systems. Cycles within Sun, Earth, and Moon systems are studied as students learn about seasons, tides, and lunar phases. Students learn that stars and galaxies are part of the universe. In addition, students use data to research scientific theories of the origin of the universe. Students will illustrate how Earth features change over time by plate tectonics. They will interpret land and erosional features on topographic maps and satellite views. Students learn how interactions in solar, weather, and ocean systems create changes in weather patterns and climate.

(E) Organisms and environments. In studies of living systems, students explore the interdependence between these systems. Students describe how biotic and abiotic factors affect the number of organisms and populations present in an ecosystem. In addition, students explore how organisms and their populations respond to short- and long-term environmental changes, including those caused by human activities.

(2) Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process." This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models. Students should know that some questions are outside the realm of science because they deal with phenomena that are not scientifically testable.

Scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power that have been tested over a wide variety of conditions become theories. Scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Students should know that scientific theories, unlike hypotheses, are well established and highly reliable, but they may still be subject to change as new information and technologies are developed. Students should be able to distinguish between scientific decision-making methods and ethical/social decisions that involve the application of scientific information.

Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.

ar8

(b) Knowledge and skills.

(3)

(4)

- (1) Scientific investigation and reasoning. The student, for at least 40% of instructional time, conducts laboratory and field investigations following safety procedures and environmentally appropriate and ethical practices. The student is expected to:
 - (A) demonstrate safe practices during laboratory and field investigations as outlined in Texas Education Agency-approved safety standards; and
 - (B) practice appropriate use and conservation of resources, including disposal, reuse, or recycling of materials.
- (2) Scientific investigation and reasoning. The student uses scientific practices during laboratory and field investigations. The student is expected to:
 - (A) plan and implement comparative and descriptive investigations by making observations, asking well defined questions, and using appropriate equipment and technology;
 - (B) design and implement experimental investigations by making observations, asking well defined questions, formulating testable hypotheses, and using appropriate equipment and technology;
 - (C) collect and record data using the International System of Units (SI) and qualitative means such as labeled drawings, writing, and graphic organizers;

August 2018 Update

§112.B.

- (D) construct tables and graphs, using repeated trials and means, to organize data and identify patterns; and
- (E) analyze data to formulate reasonable explanations, communicate valid conclusions supported by the data, and predict trends.
- (3) Scientific investigation and reasoning. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions and knows the contributions of relevant scientists. The student is expected to:
 - (A) analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, so as to encourage critical thinking by the student;
 - (B) use models to represent aspects of the natural world such as an atom, a molecule, space, or a geologic feature;
 - (C) identify advantages and limitations of models such as size, scale, properties, and materials; and
 - (D) relate the impact of research on scientific thought and society, including the history of science and contributions of scientists as related to the content.
- (4) Scientific investigation and reasoning. The student knows how to use a variety of tools and safety equipment to conduct science inquiry. The student is expected to:
 - (A) use appropriate tools, including lab journals/notebooks, beakers, meter sticks, graduated cylinders, anemometers, psychrometers, hot plates, test tubes, spring scales, balances, microscopes, thermometers, calculators, computers, spectroscopes, timing devices, and other necessary equipment to collect, record, and analyze information; and
 - (B) use preventative safety equipment, including chemical splash goggles, aprons, and gloves, and be prepared to use emergency safety equipment, including an eye/face wash, a fire blanket, and a fire extinguisher.
- (5) Matter and energy. The student knows that matter is composed of atoms and has chemical and physical properties. The student is expected to:
 - (A) describe the structure of atoms, including the masses, electrical charges, and locations, of protons and neutrons in the nucleus and electrons in the electron cloud;
 - (B) identify that protons determine an element's identity and valence electrons determine its chemical properties, including reactivity;
 - (C) interpret the arrangement of the Periodic Table, including groups and periods, to explain how properties are used to classify elements;
 - (D) recognize that chemical formulas are used to identify substances and determine the number of atoms of each element in chemical formulas containing subscripts; and
 - (E) investigate how evidence of chemical reactions indicates that new substances with different properties are formed and how that relates to the law of conservation of mass.
- (6) Force, motion, and energy. The student knows that there is a relationship between force, motion, and energy. The student is expected to:
 - (A) demonstrate and calculate how unbalanced forces change the speed or direction of an object's motion;
 - (B) differentiate between speed, velocity, and acceleration; and
 - (C) investigate and describe applications of Newton's three laws of motion such as in vehicle restraints, sports activities, amusement park rides, Earth's tectonic activities, and rocket launches.

Middle School

- (7) Earth and space. The student knows the effects resulting from cyclical movements of the Sun, Earth, and Moon. The student is expected to:
 - (A) model and illustrate how the tilted Earth rotates on its axis, causing day and night, and revolves around the Sun, causing changes in seasons;
 - (B) demonstrate and predict the sequence of events in the lunar cycle; and
 - (C) relate the positions of the Moon and Sun to their effect on ocean tides.
- (8) Earth and space. The student knows characteristics of the universe. The student is expected to:
 - (A) describe components of the universe, including stars, nebulae, and galaxies, and use models such as the Hertzsprung-Russell diagram for classification;
 - (B) recognize that the Sun is a medium-sized star located in a spiral arm of the Milky Way galaxy and that the Sun is many thousands of times closer to Earth than any other star;
 - (C) identify how different wavelengths of the electromagnetic spectrum such as visible light and radio waves are used to gain information about components in the universe; and
 - (D) research how scientific data are used as evidence to develop scientific theories to describe the origin of the universe.
- (9) Earth and space. The student knows that natural events can impact Earth systems. The student is expected to:
 - (A) describe the historical development of evidence that supports plate tectonic theory;
 - (B) relate plate tectonics to the formation of crustal features; and
 - (C) interpret topographic maps and satellite views to identify land and erosional features and predict how these features may be reshaped by weathering.
- (10) Earth and space. The student knows that climatic interactions exist among Earth, ocean, and weather systems. The student is expected to:
 - (A) recognize that the Sun provides the energy that drives convection within the atmosphere and oceans, producing winds;
 - (B) identify how global patterns of atmospheric movement influence local weather using weather maps that show high and low pressures and fronts; and
 - (C) identify the role of the oceans in the formation of weather systems such as hurricanes.
 - Organisms and environments. The student knows that interdependence occurs among living systems and the environment and that human activities can affect these systems. The student is expected to:
 - (A) investigate how organisms and populations in an ecosystem depend on and may compete for biotic factors such as food and abiotic factors such as quantity of light, water, range of temperatures, or soil composition;
 - (B) explore how short- and long-term environmental changes affect organisms and traits in subsequent populations; and full full for the second second
 - (C) recognize human dependence on ocean systems and explain how human activities such as runoff, artificial reefs, or use of resources have modified these systems.

Source: The provisions of this §112.20 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 27, 2018, 42 TexReg 5052.

- expand focus Page Page 13

August 2018 Update

Jermine its

(11)

Science

High School

Chapter 112. Texas Essential Knowledge and Skills for Science

Subchapter C. High School (excerpts)

§112.34. Biology (One Credit), Adopted 2017.

- (a) General requirements. Students shall be awarded one credit for successful completion of this course. Prerequisites: none. This course is recommended for students in Grade 9, 10, or 11.
- (b) Introduction.
 - (1) Biology. In Biology, students conduct laboratory and field investigations, use scientific practices during investigations, and make informed decisions using critical thinking and scientific problem solving. Students in Biology study a variety of topics that include: structures and functions of cells and viruses; growth and development of organisms; cells, tissues, and organs; nucleic acids and genetics; biological evolution; taxonomy; metabolism and energy transfers in living organisms; living systems; homeostasis; and ecosystems and the environment.
 - (2) Nature of science. Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process." This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models. Students should know that some questions are outside the realm of science because they deal with phenomena that are not currently scientifically testable.
 - (3) Scientific inquiry. Scientific inquiry is the planned and deliberate investigation of the natural world. Scientific methods of investigation are experimental, descriptive, or comparative. The method chosen should be appropriate to the question being asked.
 - (4) Science and social ethics. Scientific decision making is a way of answering questions about the natural world. Students should be able to distinguish between scientific decision-making methods (scientific methods) and ethical and social decisions that involve science (the application of scientific information).
 - (5) Science, systems, and models. A system is a collection of cycles, structures, and processes that interact. All systems have basic properties that can be described in space, time, energy, and matter. Change and constancy occur in systems as patterns and can be observed, measured, and modeled. These patterns help to make predictions that can be scientifically tested. Students should analyze a system in terms of its components and how these components relate to each other, to the whole, and to the external environment.
 - (6) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.

(c) Knowledge and skills.

- (1) Scientific processes. The student, for at least 40% of instructional time, conducts laboratory and field investigations using safe, environmentally appropriate, and ethical practices. The student is expected to:
 - (A) demonstrate safe practices during laboratory and field investigations; and
 - (B) demonstrate an understanding of the use and conservation of resources and the proper disposal or recycling of materials.

Gr 9-12

- (2) Scientific processes. The student uses scientific practices and equipment during laboratory and field investigations. The student is expected to:
 - (A) know the definition of science and understand that it has limitations, as specified in subsection (b)(2) of this section;

§112.C.

- (B) know that hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power that have been tested over a wide variety of conditions are incorporated into theories:
- (C) know scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well established and highly reliable explanations, but they may be subject to change as new areas of science and new technologies are developed;
- (D) distinguish between scientific hypotheses and scientific theories;
- plan and implement descriptive, comparative, and experimental investigations, including (E) asking questions, formulating testable hypotheses, and selecting equipment and technology;
- collect and organize qualitative and quantitative data and make measurements with (F) accuracy and precision using tools such as data-collecting probes, standard laboratory glassware, microscopes, various prepared slides, stereoscopes, metric rulers, balances, gel electrophoresis apparatuses, micropipettes, hand lenses, Celsius thermometers, hot plates, lab notebooks or journals, timing devices, Petri dishes, lab incubators, dissection equipment, meter sticks, and models, diagrams, or samples of biological specimens or structures; histics computation
- analyze, evaluate, make inferences, and predict trends from data; and (G)
- communicate valid conclusions supported by the data through methods such as lab (H) reports, labeled drawings, graphic organizers, journals, summaries, oral reports, and technology-based reports.

Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving (3)to make informed decisions within and outside the classroom. The student is expected to:

- analyze, evaluate, and critique scientific explanations by using empirical evidence, (A) logical reasoning, and experimental and observational testing, so as to encourage critical thinking by the student;
- (B) communicate and apply scientific information extracted from various sources such as current events, published journal articles, and marketing materials;
- (C) draw inferences based on data related to promotional materials for products and services;
- (D) evaluate the impact of scientific research on society and the environment;
- (E) evaluate models according to their limitations in representing biological objects or events; and
- (F) research and describe the history of biology and contributions of scientists.

Science concepts. The student knows that cells are the basic structures of all living things with specialized parts that perform specific functions and that viruses are different from cells. The student is expected to:

- compare and contrast prokaryotic and eukaryotic cells, including their complexity, and (A) compare and contrast scientific explanations for cellular complexity;
- (B) investigate and explain cellular processes, including homeostasis and transport of molecules; and
- (C) compare the structures of viruses to cells, describe viral reproduction, and describe the role of viruses in causing diseases such as human immunodeficiency virus (HIV) and influenza.

Page 2

(4)

High School

- (5) Science concepts. The student knows how an organism grows and the importance of cell differentiation. The student is expected to:
 - (A) describe the stages of the cell cycle, including deoxyribonucleic acid (DNA) replication and mitosis, and the importance of the cell cycle to the growth of organisms;
 - (B) describe the roles of DNA, ribonucleic acid (RNA), and environmental factors in cell differentiation; and
 - (C) recognize that disruptions of the cell cycle lead to diseases such as cancer.
- (6) Science concepts. The student knows the mechanisms of genetics such as the role of nucleic acids and the principles of Mendelian and non-Mendelian genetics. The student is expected to:
 - (A) identify components of DNA, identify how information for specifying the traits of an organism is carried in the DNA, and examine scientific explanations for the origin of DNA;
 - (B) recognize that components that make up the genetic code are common to all organisms;
 - (C) explain the purpose and process of transcription and translation using models of DNA and RNA;
 - (D) recognize that gene expression is a regulated process;
 - (E) identify and illustrate changes in DNA and evaluate the significance of these changes;
 - (F) predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses, and non-Mendelian inheritance; and
 - (G) recognize the significance of meiosis to sexual reproduction.
- (7) Science concepts. The student knows evolutionary theory is a scientific explanation for the unity and diversity of life. The student is expected to:
 - (A) analyze and evaluate how evidence of common ancestry among groups is provided by the fossil record, biogeography, and homologies, including anatomical, molecular, and developmental;
 - examine scientific explanations of abrupt appearance and stasis in the fossil record;
 - (C) analyze and evaluate how natural selection produces change in populations, not individuals;
 - (D) analyze and evaluate how the elements of natural selection, including inherited variation, the potential of a population to produce more offspring than can survive, and a finite supply of environmental resources, result in differential reproductive success;
 - (E) analyze and evaluate the relationship of natural selection to adaptation and to the development of diversity in and among species; and
 - (F) analyze other evolutionary mechanisms, including genetic drift, gene flow, mutation, and recombination.

(8) Science concepts. The student knows that taxonomy is a branching classification based on the shared characteristics of organisms and can change as new discoveries are made. The student is expected to:

- (A) define taxonomy and recognize the importance of a standardized taxonomic system to the scientific community;
- (B) categorize organisms using a hierarchical classification system based on similarities and differences shared among groups; and
- (C) compare characteristics of taxonomic groups, including archaea, bacteria, protists, fungi, plants, and animals.

August 2018 Update

(B)

§112.C.

- (9) Science concepts. The student knows the significance of various molecules involved in metabolic processes and energy conversions that occur in living organisms. The student is expected to:
 - (A) compare the functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids;
 - (B) compare the reactants and products of photosynthesis and cellular respiration in terms of energy, energy conversions, and matter; and
 - (C) identify and investigate the role of enzymes.
- (10) Science concepts. The student knows that biological systems are composed of multiple levels. The student is expected to:
 - (A) describe the interactions that occur among systems that perform the functions of regulation, nutrient absorption, reproduction, and defense from injury or illness in animals;
 - (B) describe the interactions that occur among systems that perform the functions of transport, reproduction, and response in plants; and
 - (C) analyze the levels of organization in biological systems and relate the levels to each other and to the whole system.
- (11) Science concepts. The student knows that biological systems work to achieve and maintain balance. The student is expected to:
 - summarize the role of microorganisms in both maintaining and disrupting the health of both organisms and ecosystems; and
 - (B) describe how events and processes that occur during ecological succession can change populations and species diversity.
- (12) Science concepts. The student knows that interdependence and interactions occur within an environmental system. The student is expected to:
 - (A) interpret relationships, including predation, parasitism, commensalism, mutualism, and competition, among organisms;
 - (B) compare variations and adaptations of organisms in different ecosystems;
 - (C) analyze the flow of matter and energy through trophic levels using various models, including food chains, food webs, and ecological pyramids;
 - (D) describe the flow of matter through the carbon and nitrogen cycles and explain the consequences of disrupting these cycles; and
 - (E) describe how environmental change can impact ecosystem stability.

Source: The provisions of this §112.34 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 27, 2018, 42 TexReg 5052.

§112.35. Chemistry (One Credit), Adopted 2017.

- (a) General requirements. Students shall be awarded one credit for successful completion of this course.
 Required prerequisites: one unit of high school science and Algebra I. Suggested prerequisite: completion of or concurrent enrollment in a second year of mathematics. This course is recommended for students in Grade 10, 11, or 12.
- (b) Introduction.
 - (1) Chemistry. In Chemistry, students conduct laboratory and field investigations, use scientific practices during investigations, and make informed decisions using critical thinking and scientific problem solving. Students study a variety of topics that include characteristics of matter, use of the Periodic Table, development of atomic theory and chemical bonding, chemical stoichiometry, gas

Page 4

High School

laws, solution chemistry, thermochemistry, and nuclear chemistry. Students will investigate how chemistry is an integral part of our daily lives.

- (2) Nature of science. Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process." This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models. Students should know that some questions are outside the realm of science because they deal with phenomena that are not currently scientifically testable.
- (3) Scientific inquiry. Scientific inquiry is the planned and deliberate investigation of the natural world. Scientific practices of investigation can be experimental, descriptive, or comparative. The method chosen should be appropriate to the question being asked.
- (4) Science and social ethics. Scientific decision making is a way of answering questions about the natural world. Students should be able to distinguish between scientific decision-making methods and ethical and social decisions that involve the application of scientific information.
- (5) Scientific systems. A system is a collection of cycles, structures, and processes that interact. All systems have basic properties that can be described in terms of space, time, energy, and matter. Change and constancy occur in systems as patterns and can be observed, measured, and modeled. These patterns help to make predictions that can be scientifically tested. Students should analyze a system in terms of its components and how these components relate to each other, to the whole, and to the external environment.
- (6) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.

(c) Knowledge and skills.

- (1) Scientific processes. The student, for at least 40% of instructional time, conducts laboratory and field investigations using safe, environmentally appropriate, and ethical practices. The student is expected to:
 - (A) demonstrate safe practices during laboratory and field investigations, including the appropriate use of safety showers, eyewash fountains, safety goggles or chemical splash goggles, as appropriate, and fire extinguishers;
 - (B) know specific hazards of chemical substances such as flammability, corrosiveness, and radioactivity as summarized on the Safety Data Sheets (SDS); and
 - (C) demonstrate an understanding of the use and conservation of resources and the proper disposal or recycling of materials.
- (2) Scientific processes. The student uses scientific practices to solve investigative questions. The student is expected to:
 - (A) know the definition of science and understand that it has limitations, as specified in subsection (b)(2) of this section;
 - (B) know that scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power that have been tested over a wide variety of conditions are incorporated into theories;
 - (C) know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well established and highly reliable explanations, but may be subject to change as new areas of science and new technologies are developed;
 - (D) distinguish between scientific hypotheses and scientific theories;
 - (E) plan and implement investigative procedures, including asking questions, formulating testable hypotheses, and selecting equipment and technology, including graphing

August 2018 Update

Show to were clambia

(4)

§112.C.

calculators, computers and probes, electronic balances, an adequate supply of consumable chemicals, and sufficient scientific glassware such as beakers, Erlenmeyer flasks, pipettes, graduated cylinders, volumetric flasks, and burettes;

- (F) collect data and make measurements with accuracy and precision;
- (G) express and manipulate chemical quantities using scientific conventions and mathematical procedures, including dimensional analysis, scientific notation, and significant figures;
- (H) organize, analyze, evaluate, make inferences, and predict trends from data; and
- (I) communicate valid conclusions supported by the data through methods such as lab reports, labeled drawings, graphs, journals, summaries, oral reports, and technologybased reports.
- (3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:
 - (A) analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, so as to encourage critical thinking by the student;
 - (B) communicate and apply scientific information extracted from various sources such as current events, published journal articles, and marketing materials;
 - (C) draw inferences based on data related to promotional materials for products and services;
 - (D) evaluate the impact of research on scientific thought, society, and the environment;
 - (E) describe the connection between chemistry and future careers; and
 - (F) describe the history of chemistry and contributions of scientists.

Science concepts. The student knows the characteristics of matter and can analyze the relationships between chemical and physical changes and properties. The student is expected to:

- (A) differentiate between physical and chemical changes and properties;
- (B) identify extensive properties such as mass and volume and intensive properties such as density and melting point;
- (C) compare solids, liquids, and gases in terms of compressibility, structure, shape, and volume; and
- (D) classify matter as pure substances or mixtures through investigation of their properties.
- (5) Science concepts. The student understands the historical development of the Periodic Table and can apply its predictive power. The student is expected to:
 - (A) explain the use of chemical and physical properties in the historical development of the Periodic Table;
 - (B) identify and explain the properties of chemical families, including alkali metals, alkaline earth metals, halogens, noble gases, and transition metals, using the Periodic Table; and
 - (C) interpret periodic trends, including atomic radius, electronegativity, and ionization energy, using the Periodic Table.
- (6) Science concepts. The student knows and understands the historical development of atomic theory. The student is expected to:
 - (A) describe the experimental design and conclusions used in the development of modern atomic theory, including Dalton's Postulates, Thomson's discovery of electron properties, Rutherford's nuclear atom, and Bohr's nuclear atom;

Page 6

High School

- (B) describe the mathematical relationships between energy, frequency, and wavelength of light using the electromagnetic spectrum;
- (C) calculate average atomic mass of an element using isotopic composition; and
- (D) express the arrangement of electrons in atoms of representative elements using electron configurations and Lewis valence electron dot structures.
- (7) Science concepts. The student knows how atoms form ionic, covalent, and metallic bonds. The student is expected to:
 - (A) name ionic compounds containing main group or transition metals, covalent compounds, acids, and bases using International Union of Pure and Applied Chemistry (IUPAC) nomenclature rules;
 - (B) write the chemical formulas of ionic compounds containing representative elements, transition metals and common polyatomic ions, covalent compounds, and acids and bases;
 - (C) construct electron dot formulas to illustrate ionic and covalent bonds;
 - (D) describe metallic bonding and explain metallic properties such as thermal and electrical conductivity, malleability, and ductility; and
 - (E) classify molecular structure for molecules with linear, trigonal planar, and tetrahedral electron pair geometries as explained by Valence Shell Electron Pair Repulsion (VSEPR) theory.
- (8) Science concepts. The student can quantify the changes that occur during chemical reactions. The student is expected to:
 - (A) define and use the concept of a mole;
 - (B) calculate the number of atoms or molecules in a sample of material using Avogadro's number;
 - (C) calculate percent composition of compounds;
 - (D) differentiate between empirical and molecular formulas;
 - (E) write and balance chemical equations using the law of conservation of mass;
 - differentiate among double replacement reactions, including acid-base reactions and precipitation reactions, and oxidation-reduction reactions such as synthesis, decomposition, single replacement, and combustion reactions;
 - (G) perform stoichiometric calculations, including determination of mass and gas volume relationships between reactants and products and percent yield; and
 - (H) describe the concept of limiting reactants in a balanced chemical equation.
- (9) Science concepts. The student understands the principles of ideal gas behavior, kinetic molecular theory, and the conditions that influence the behavior of gases. The student is expected to:
 - (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as described by Boyle's law, Charles' law, Avogadro's law, Dalton's law of partial pressure, and the ideal gas law; and
 - (B) describe the postulates of kinetic molecular theory.
- (10) Science concepts. The student understands and can apply the factors that influence the behavior of solutions. The student is expected to:
 - (A) describe the unique role of water in solutions in terms of polarity;
 - (B) apply the general rules regarding solubility through investigations with aqueous solutions;

August 2018 Update

§112.C.

- (C) calculate the concentration of solutions in units of molarity;
- (D) calculate the dilutions of solutions using molarity;
- (E) distinguish among types of solutions such as electrolytes and nonelectrolytes; unsaturated, saturated, and supersaturated solutions; and strong and weak acids and bases;
- (F) investigate factors that influence solid and gas solubilities and rates of dissolution such as temperature, agitation, and surface area;
- (G) define acids and bases and distinguish between Arrhenius and Bronsted-Lowry definitions and predict products in acid-base reactions that form water; and
- (H) define pH and calculate the pH of a solution using the hydrogen ion concentration.

Science concepts. The student understands the energy changes that occur in chemical reactions. The student is expected to:

- (A) describe energy and its forms, including kinetic, potential, chemical, and thermal energies;
- (B) describe the law of conservation of energy and the processes of heat transfer in terms of calorimetry;
- (C) classify reactions as exothermic or endothermic and represent energy changes that occur in chemical reactions using thermochemical equations or graphical analysis; and
- (D) perform calculations involving heat, mass, temperature change, and specific heat.

Science concepts. The student understands the basic processes of nuclear chemistry. The student is expected to:

- (A) describe the characteristics of alpha, beta, and gamma radioactive decay processes in terms of balanced nuclear equations; and
- (B) compare fission and fusion reactions.

Source: The provisions of this §112.35 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 27, 2018, 42 TexReg 5052.

§112.38. Integrated Physics and Chemistry (One Credit), Adopted 2017.

- (a) General requirements. Students shall be awarded one credit for successful completion of this course. Prerequisites: none. This course is recommended for students in Grade 9 or 10.
- (b) Introduction.

(11)

would be chand

- (1) Integrated Physics and Chemistry. In Integrated Physics and Chemistry, students conduct laboratory and field investigations, use scientific practices during investigation, and make informed decisions using critical thinking and scientific problem solving. This course integrates the disciplines of physics and chemistry in the following topics: force, motion, energy, and matter.
- (2) Nature of science. Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process." This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models. Students should know that some questions are outside the realm of science because they deal with phenomena that are not currently scientifically testable.
- (3) Scientific inquiry. Scientific inquiry is the planned and deliberate investigation of the natural world. Scientific methods of investigation are experimental, descriptive, or comparative. The method chosen should be appropriate to the question being asked.

Page 8

High School

- §112.C.
- (4) Science and social ethics. Scientific decision making is a way of answering questions about the natural world. Students should be able to distinguish between scientific decision-making methods (scientific practices) and ethical and social decisions that involve science (the application of scientific information).
- (5) Science, systems, and models. A system is a collection of cycles, structures, and processes that interact. All systems have basic properties that can be described in space, time, energy, and matter. Change and constancy occur in systems as patterns and can be observed, measured, and modeled. These patterns help to make predictions that can be scientifically tested. Students should analyze a system in terms of its components and how these components relate to each other, to the whole, and to the external environment.
- (6) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.
- (c) Knowledge and skills.
 - (1) Scientific processes. The student, for at least 40% of instructional time, conducts laboratory and field investigations using safe, environmentally appropriate, and ethical practices. The student is expected to:
 - (A) demonstrate safe practices during laboratory and field investigations, including the appropriate use of safety showers, eyewash fountains, safety goggles or chemical splash goggles, as appropriate, and fire extinguishers;
 - (B) know specific hazards of chemical substances such as flammability, corrosiveness, and radioactivity as summarized on the Safety Data Sheets (SDS); and
 - (C) demonstrate an understanding of the use and conservation of resources and the proper disposal or recycling of materials.
 - (2) Scientific processes. The student uses scientific practices during laboratory and field investigations. The student is expected to:
 - (A) know the definition of science and understand that it has limitations, as specified in subsection (b)(2) of this section;
 - (B) plan and implement investigative procedures, including asking questions, formulating testable hypotheses, and selecting equipment and technology;
 - (C) collect data and make measurements with accuracy and precision;
 - (D) organize, analyze, evaluate, make inferences, and predict trends from data; and
 - (E) communicate valid conclusions supported by the data through methods such as lab reports, labeled drawings, graphs, journals, summaries, oral reports, and technologybased reports.
 - (3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions. The student is expected to:
 - (A) analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, so as to encourage critical thinking by the student;
 - (B) communicate and apply scientific information extracted from various sources such as current events, published journal articles, and marketing materials;
 - (C) draw inferences based on data related to promotional materials for products and services;
 - (D) evaluate the impact of research on scientific thought, society, and the environment;
 - (E) describe connections between physics and chemistry and future careers; and
 - (F) research and describe the history of physics and chemistry and contributions of scientists.

August 2018 Update

§112.C.

- (4) Science concepts. The student knows concepts of force and motion evident in everyday life. The student is expected to:
 - (A) describe and calculate an object's motion in terms of position, displacement, speed, and acceleration;
 - (B) measure and graph distance and speed as a function of time;
 - (C) investigate how an object's motion changes only when a net force is applied, including activities and equipment such as toy cars, vehicle restraints, sports activities, and classroom objects;
 - (D) describe and calculate the relationship between force, mass, and acceleration using equipment such as dynamic carts, moving toys, vehicles, and falling objects;
 - (E) explain the concept of conservation of momentum using action and reaction forces;
 - (F) describe the gravitational attraction between objects of different masses at different distances; and
 - (G) examine electrical force as a universal force between any two charged objects.
- (5) Science concepts. The student recognizes multiple forms of energy and knows the impact of energy transfer and energy conservation in everyday life. The student is expected to:
 - (A) recognize and demonstrate that objects and substances in motion have kinetic energy such as vibration of atoms, water flowing down a stream moving pebbles, and bowling balls knocking down pins;
 - (B) recognize and demonstrate common forms of potential energy, including gravitational, elastic, and chemical, such as a ball on an inclined plane, springs, and batteries;
 - (C) demonstrate that moving electric charges produce magnetic forces and moving magnets produce electric forces;
 - (D) investigate the law of conservation of energy;
 - (E) investigate and demonstrate the movement of thermal energy through solids, liquids, and gases by convection, conduction, and radiation such as in weather, living, and mechanical systems;
 - (F) evaluate the transfer of electrical energy in series and parallel circuits and conductive materials;
 - (G) explore the characteristics and behaviors of energy transferred by waves, including acoustic, seismic, light, and waves on water, as they reflect, refract, diffract, interfere with one another, and are absorbed by materials;
 - (H) analyze energy transformations of renewable and nonrenewable resources; and
 - (I) critique the advantages and disadvantages of various energy sources and their impact on society and the environment.
- (6) Science concepts. The student knows that relationships exist between the structure and properties of matter. The student is expected to:
 - (A) examine differences in physical properties of solids, liquids, and gases as explained by the arrangement and motion of atoms or molecules;
 - relate chemical properties of substances to the arrangement of their atoms;
 - (C)

(B)

(D)

- analyze physical and chemical properties of elements and compounds such as color, density, viscosity, buoyancy, boiling point, freezing point, conductivity, and reactivity;
- relate the placement of an element on the Periodic Table to its physical and chemical behavior, including bonding and classification;

Page 10

High School

- (E) relate the structure of water to its function as a solvent; and
- (F) investigate the properties of water solutions and factors affecting solid solubility, including nature of solute, temperature, and concentration.
- (7) Science concepts. The student knows that changes in matter affect everyday life. The student is expected to:
 - (A) investigate changes of state as it relates to the arrangement of particles of matter and energy transfer;
 - (B) recognize that chemical changes can occur when substances react to form different substances and that these interactions are largely determined by the valence electrons;
 - (C) demonstrate that mass is conserved when substances undergo chemical change and that the number and kind of atoms are the same in the reactants and products;
 - (D) classify energy changes that accompany chemical reactions such as those occurring in heat packs, cold packs, and glow sticks as exothermic or endothermic reactions;
 - (E) describe types of nuclear reactions such as fission and fusion and their roles in applications such as medicine and energy production; and
 - (F) research and describe the environmental and economic impact of the end-products of chemical reactions such as those that may result in acid rain, degradation of water and air quality, and ozone depletion.

Source: The provisions of this §112.38 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 27, 2018, 42 TexReg 5052.

§112.39. Physics (One Credit), Adopted 2017.

- General requirements. Students shall be awarded one credit for successful completion of this course. Algebra I is suggested as a prerequisite or corequisite. This course is recommended for students in Grade 9, 10, 11, or 12.
- (b) Introduction.
 - (1) Physics. In Physics, students conduct laboratory and field investigations, use scientific practices during investigations, and make informed decisions using critical thinking and scientific problem solving. Students study a variety of topics that include: laws of motion; changes within physical systems and conservation of energy and momentum; forces; thermodynamics; characteristics and behavior of waves; and atomic, nuclear, and quantum physics. Students who successfully complete Physics will acquire factual knowledge within a conceptual framework, practice experimental design and interpretation, work collaboratively with colleagues, and develop critical-thinking skills.
 - (2) Nature of science. Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process." This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models. Students should know that some questions are outside the realm of science because they deal with phenomena that are not currently scientifically testable by empirical science.
 - (3) Scientific inquiry. Scientific inquiry is the planned and deliberate investigation of the natural world. Scientific methods of investigation can be experimental, descriptive, or comparative. The method chosen should be appropriate to the question being asked.
 - (4) Science and social ethics. Scientific decision making is a way of answering questions about the natural world. Students should be able to distinguish between scientific decision-making methods and ethical and social decisions that involve the application of scientific information.

§112.C.

- (5) Scientific systems. A system is a collection of cycles, structures, and processes that interact. All systems have basic properties that can be described in terms of space, time, energy, and matter. Change and constancy occur in systems as patterns and can be observed, measured, and modeled. These patterns help to make predictions that can be scientifically tested. Students should analyze a system in terms of its components and how these components relate to each other, to the whole, and to the external environment.
- (6) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.
- (c) Knowledge and skills.
 - (1) Scientific processes. The student conducts investigations, for at least 40% of instructional time, using safe, environmentally appropriate, and ethical practices. These investigations must involve actively obtaining and analyzing data with physical equipment but may also involve experimentation in a simulated environment as well as field observations that extend beyond the classroom. The student is expected to:
 - (A) demonstrate safe practices during laboratory and field investigations; and
 - (B) demonstrate an understanding of the use and conservation of resources and the proper disposal or recycling of materials.
 - (2) Scientific processes. The student uses a systematic approach to answer scientific laboratory and field investigative questions. The student is expected to:
 - (A) know the definition of science and understand that it has limitations, as specified in subsection (b)(2) of this section;
 - (B) know that scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence;
 - (C) know that scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well established and highly reliable explanations, but may be subject to change;
 - (D) design and implement investigative procedures, including making observations, asking well defined questions, formulating testable hypotheses, identifying variables, selecting appropriate equipment and technology, evaluating numerical answers for reasonableness, and identifying causes and effects of uncertainties in measured data;
 - (E) demonstrate the use of course apparatus, equipment, techniques, and procedures, including multimeters (current, voltage, resistance), balances, batteries, dynamics demonstration equipment, collision apparatus, lab masses, magnets, plane mirrors, convex lenses, stopwatches, trajectory apparatus, graph paper, magnetic compasses, protractors, metric rulers, spring scales, thermometers, slinky springs, and/or other equipment and materials that will produce the same results;

budgets.

(G)

use a wide variety of additional course apparatus, equipment, techniques, materials, and procedures as appropriate such as ripple tank with wave generator, wave motion rope, tuning forks, hand-held visual spectroscopes, discharge tubes with power supply (H, He, Ne, Ar), electromagnetic spectrum charts, laser pointers, micrometer, caliper, computer, data acquisition probes, scientific calculators, graphing technology, electrostatic kits, electroscope, inclined plane, optics bench, optics kit, polarized film, prisms, pulley with table clamp, motion detectors, photogates, friction blocks, ballistic carts or equivalent, resonance tube, stroboscope, resistors, copper wire, switches, iron filings, and/or other equipment and materials that will produce the same results;

make measurements with accuracy and precision and record data using scientific notation and International System (SI) units;

Page 12

High School

- (H) organize, evaluate, and make inferences from data, including the use of tables, charts, and graphs;
- (I) communicate valid conclusions supported by the data through various methods such as lab reports, labeled drawings, graphic organizers, journals, summaries, oral reports, and technology-based reports; and
- (J) express relationships among physical variables quantitatively, including the use of graphs, charts, and equations.
- (3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:
 - (A) analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, so as to encourage critical thinking by the student:
 - communicate and apply scientific information extracted from various sources such as (B) current events, news reports, published journal articles, and marketing materials;
 - (C) explain the impacts of the scientific contributions of a variety of historical and contemporary scientists on scientific thought and society;
 - (D) research and describe the connections between physics and future careers; and
 - (E) express, manipulate, and interpret relationships symbolically in accordance with accepted theories to make predictions and solve problems mathematically.
- (4)Science concepts. The student knows and applies the laws governing motion in a variety of situations. The student is expected to:
 - (A) generate and interpret graphs and charts describing different types of motion, including investigations using real-time technology such as motion detectors or photogates;
 - (B) describe and analyze motion in one dimension using equations and graphical vector addition with the concepts of distance, displacement, speed, average velocity, instantaneous velocity, frames of reference, and acceleration;
 - analyze and describe accelerated motion in two dimensions, including using equations, (C) graphical vector addition, and projectile and circular examples; and
- Ull Hnoughout w/o regenerate to stabistical (Groomandes (D) calculate the effect of forces on objects, including the law of inertia, the relationship between force and acceleration, and the nature of force pairs between objects using methods, including free-body force diagrams.

Science concepts. The student knows the nature of forces in the physical world. The student is expected to:

- (A) describe the concepts of gravitational, electromagnetic, weak nuclear, and strong nuclear forces:
- (B) describe and calculate how the magnitude of the gravitational force between two objects depends on their masses and the distance between their centers;
- (C) describe and calculate how the magnitude of the electric force between two objects depends on their charges and the distance between their centers;
- (D) identify and describe examples of electric and magnetic forces and fields in everyday life such as generators, motors, and transformers;
- (E) characterize materials as conductors or insulators based on their electric properties; and
- (F) investigate and calculate current through, potential difference across, resistance of, and power used by electric circuit elements connected in both series and parallel combinations.

August 2018 Update

§112.C.

- (6) Science concepts. The student knows that changes occur within a physical system and applies the laws of conservation of energy and momentum. The student is expected to:
 - (A) investigate and calculate quantities using the work-energy theorem in various situations;
 - (B) investigate examples of kinetic and potential energy and their transformations;
 - (C) calculate the mechanical energy of, power generated within, impulse applied to, and momentum of a physical system;
 - (D) demonstrate and apply the laws of conservation of energy and conservation of momentum in one dimension; and
 - (E) explain everyday examples that illustrate the four laws of thermodynamics and the processes of thermal energy transfer.

(7) Science concepts. The student knows the characteristics and behavior of waves. The student is expected to:

- (A) examine and describe oscillatory motion and wave propagation in various types of media;
- (B) investigate and analyze characteristics of waves, including velocity, frequency, amplitude, and wavelength, and calculate using the relationship between wavespeed, frequency, and wavelength;
- (C) compare characteristics and behaviors of transverse waves, including electromagnetic waves and the electromagnetic spectrum, and characteristics and behaviors of longitudinal waves, including sound waves;
- (D) investigate behaviors of waves, including reflection, refraction, diffraction, interference, resonance, and the Doppler effect; and
- (E) describe and predict image formation as a consequence of reflection from a plane mirror and refraction through a thin convex lens.
- (8) Science concepts. The student knows simple examples of atomic, nuclear, and quantum phenomena. The student is expected to:
 - (A) describe the photoelectric effect and the dual nature of light;
 - (B) compare and explain the emission spectra produced by various atoms;
 - (C) calculate and describe the applications of mass-energy equivalence; and
 - (D) give examples of applications of atomic and nuclear phenomena using the standard model such as nuclear stability, fission and fusion, radiation therapy, diagnostic imaging, semiconductors, superconductors, solar cells, and nuclear power and examples of applications of quantum phenomena.

Source: The provisions of this §112.39 adopted to be effective August 4, 2009, 34 TexReg 5063; amended to be effective August 27, 2018, 42 TexReg 5052.

Page 14